function [iter, optCond, time, w, gamma] = lsvm(A,D,nu,tol,maxIter,alpha, ...
perturb,normalize);
% LSVM Langrangian Support Vector Machine algorithm
% LSVM solves a support vector machine problem using an iterative
% algorithm inspired by an augmented Lagrangian formulation.
%
% iters = lsvm(A,D)
%
% where A is the data matrix, D is a diagonal matrix of 1s and -1s
% indicating which class the points are in, and 'iters' is the number
% of iterations the algorithm used.
%
% All the following additional arguments are optional:
%
% [iters, optCond, time, w, gamma] = ...
% lsvm(A,D,nu,tol,maxIter,alpha,perturb,normalize)
%
% optCond is the value of the optimality condition at termination.
% time is the amount of time the algorithm took to terminate.
% w is the vector of coefficients for the separating hyperplane.
% gamma is the threshold scalar for the separating hyperplane.
%
% On the right hand side, A and D are required. If the rest are not
% specified, the following defaults will be used:
% nu = 1/size(A,1), tol = 1e-5, maxIter = 100, alpha = 1.9/nu,
% perturb = 0, normalize = 0
%
% perturb indicates that all the data should be perturbed by a random
% amount between 0 and the value given. perturb is recommended only
% for highly degenerate cases such as the exclusive or.
%
% normalize should be set to 1 if the data should be normalized before
% training.
%
% The value -1 can be used for any of the entries (except A and D) to
% specify that default values should be used.
%
% Copyright (C) 2000 Olvi L. Mangasarian and David R. Musicant.
% Version 1.0 Beta 1
% This software is free for academic and research use only.
% For commercial use, contact musicant@cs.wisc.edu.
% If D is a vector, convert it to a diagonal matrix.
[k,n] = size(D);
if k==1 | n==1
D=diag(D);
end;
% Check all components of D and verify that they are +-1
checkall = diag(D)==1 | diag(D)==-1;
if any(checkall==0)
error('Error in D: classes must be all 1 or -1.');
end;
m = size(A,1);
if ~exist('nu') | nu==-1
nu = 1/m;
end;
if ~exist('tol') | tol==-1
tol = 1e-5;
end;
if ~exist('maxIter') | maxIter==-1
maxIter = 100;
end;
if ~exist('alpha') | alpha==-1
alpha = 1.9/nu;
end;
if ~exist('normalize') | normalize==-1
normalize = 0;
end;
if ~exist('perturb') | perturb==-1
perturb = 0;
end;
% Do a sanity check on alpha
if alpha > 2/nu,
disp(sprintf('Alpha is larger than 2/nu. Algorithm may not converge.'));
end;
% Perturb if appropriate
rand('seed',22);
if perturb,
A = A + rand(size(A))*perturb;
end;
% Normalize if appropriate
if normalize,
avg = mean(A);
dev = std(A);
if (isempty(find(dev==0)))
A = (A - avg(ones(m,1),:))./dev(ones(m,1),:);
else
warning('Could not normalize matrix: at least one column is constant.');
end;
end;
% Create matrix H
[m,n] = size(A);
e = ones(m,1);
H = D*[A -e];
iter = 0;
time = cputime;
% "K" is an intermediate matrix used often in SMW calclulations
K = H*inv((speye(n+1)/nu+H'*H));
% Choose initial value for x
x = nu*(1-K*(H'*e));
% y is the old value for x, used to check for termination
y = x + 1;
while iter < maxIter & norm(y-x)>tol
% Intermediate calculation which is used twice
z = (1+pl(((x/nu+H*(H'*x))-alpha*x)-1));
y = x;
% Calculate new value of x
x=nu*(z-K*(H'*z));
iter = iter + 1;
end;
% Determine outputs
time = cputime - time;
optCond = norm(x-y);
w = A'*D*x;
gamma = -e'*D*x;
disp(sprintf('Running time (CPU secs) = %g',time));
disp(sprintf('Number of iterations = %d',iter));
disp(sprintf('Training accuracy = %g',sum(D*(A*w-gamma)>0)/m));
return;
function pl = pl(x);
%PLUS function : max{x,0}
pl = (x+abs(x))/2;
return;