function [reg_c,rho_c,eta_c] = l_corner(rho,eta,reg_param,U,s,b,method,M)
%L_CORNER Locate the "corner" of the L-curve.
%
% [reg_c,rho_c,eta_c] =
% l_corner(rho,eta,reg_param)
% l_corner(rho,eta,reg_param,U,s,b,method,M)
% l_corner(rho,eta,reg_param,U,sm,b,method,M) , sm = [sigma,mu]
%
% Locates the "corner" of the L-curve in log-log scale.
%
% It is assumed that corresponding values of || A x - b ||, || L x ||,
% and the regularization parameter are stored in the arrays rho, eta,
% and reg_param, respectively (such as the output from routine l_curve).
%
% If nargin = 3, then no particular method is assumed, and if
% nargin = 2 then it is issumed that reg_param = 1:length(rho).
%
% If nargin >= 6, then the following methods are allowed:
% method = 'Tikh' : Tikhonov regularization
% method = 'tsvd' : truncated SVD or GSVD
% method = 'dsvd' : damped SVD or GSVD
% method = 'mtsvd' : modified TSVD,
% and if no method is specified, 'Tikh' is default. If the Spline Toolbox
% is not available, then only 'Tikh' and 'dsvd' can be used.
%
% An eighth argument M specifies an upper bound for eta, below which
% the corner should be found.
% The following functions from the Spline Toolbox are needed if
% method differs from 'Tikh' or 'dsvd':
% fnder, ppbrk, ppmak, ppual, sp2pp, sorted, spbrk, spmak, sprpp.
% Per Christian Hansen, IMM, Dec. 12, 2002.
% Set default regularization method.
if (nargin <= 3)
method = 'none';
if (nargin==2), reg_param = [1:length(rho)]'; end
else
if (nargin==6), method = 'Tikh'; end
end
% Set threshold for skipping very small singular values in the
% analysis of a discrete L-curve.
s_thr = eps; % Neglect singular values less than s_thr.
% Set default parameters for treatment of discrete L-curve.
deg = 2; % Degree of local smooting polynomial.
q = 2; % Half-width of local smoothing interval. orig = 2
order = 4; % Order of fitting 2-D spline curve.
% Initialization.
if (length(rho) < order)
error('Too few data points for L-curve analysis')
end
if (nargin > 3)
[p,ps] = size(s); [m,n] = size(U);
beta = U'*b;
if (m>n), b0 = b - U*beta; end
if (ps==2)
s = s(p:-1:1,1)./s(p:-1:1,2);
U = U(:,p:-1:1);
beta = beta(p:-1:1);
end
xi = beta./s;
end
% Restrict the analysis of the L-curve according to M (if specified).
if (nargin==8)
index = find(eta < M);
rho = rho(index); eta = eta(index); reg_param = reg_param(index);
end
if (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))
% The L-curve is differentiable; computation of curvature in
% log-log scale is easy.
% Compute g = - curvature of L-curve.
g = lcfun(reg_param,s,beta,xi);
% Locate the corner. If the curvature is negative everywhere,
% then define the leftmost point of the L-curve as the corner.
[gmin,gi] = min(g);
reg_c = fminbnd('lcfun',...
reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...
optimset('Display','off'),s,beta,xi); % Minimizer.
kappa_max = - lcfun(reg_c,s,beta,xi); % Maximum curvature.
if (kappa_max < 0)
lr = length(rho);
reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);
else
f = (s.^2)./(s.^2 + reg_c^2);
eta_c = norm(f.*xi);
rho_c = norm((1-f).*beta);
if (m>n), rho_c = sqrt(rho_c^2 + norm(b0)^2); end
end
elseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4) | ...
strncmp(method,'mtsv',4) | strncmp(method,'none',4))
% The L-curve is discrete and may include unwanted fine-grained
% corners. Use local smoothing, followed by fitting a 2-D spline
% curve to the smoothed discrete L-curve.
% Check if the Spline Toolbox exists, otherwise return.
if (exist('splines')~=7)
error('The Spline Toolbox in not available so l_corner cannot be used')
end
% For TSVD, TGSVD, and MTSVD, restrict the analysis of the L-curve
% according to s_thr.
if (nargin > 3)
if (nargin==8) % In case the bound M is in action.
s = s(index,:);
beta = beta(index);
xi = xi(index);
end
index = find(s > s_thr);
rho = rho(index); eta = eta(index); reg_param = reg_param(index);
s = s(index); beta = beta(index); xi = xi(index);
end
% Convert to logarithms.
lr = length(rho);
lrho = log(rho); leta = log(eta); slrho = lrho; sleta = leta;
% For all interior points k = q+1:length(rho)-q-1 on the discrete
% L-curve, perform local smoothing with a polynomial of degree deg
% to the points k-q:k+q.
v = [-q:q]'; A = zeros(2*q+1,deg+1); A(:,1) = ones(length(v),1);
for j = 2:deg+1, A(:,j) = A(:,j-1).*v; end
for k = q+1:lr-q-1
cr = A\lrho(k+v); slrho(k) = cr(1);
ce = A\leta(k+v); sleta(k) = ce(1);
end
% Fit a 2-D spline curve to the smoothed discrete L-curve.
sp = spmak([1:lr+order],[slrho';sleta']);
pp = ppbrk(sp2pp(sp),[4,lr+1]);
% Extract abscissa and ordinate splines and differentiate them.
% Compute as many function values as default in spleval.
P = spleval(pp); dpp = fnder(pp);
D = spleval(dpp); ddpp = fnder(pp,2);
DD = spleval(ddpp);
ppx = P(1,:); ppy = P(2,:);
dppx = D(1,:); dppy = D(2,:);
ddppx = DD(1,:); ddppy = DD(2,:);
% Compute the corner of the discretized .spline curve via max. curvature.
% No need to refine this corner, since the final regularization
% parameter is discrete anyway.
% Define curvature = 0 where both dppx and dppy are zero.
k1 = dppx.*ddppy - ddppx.*dppy;
k2 = (dppx.^2 + dppy.^2).^(1.5);
I_nz = find(k2 ~= 0);
kappa = zeros(1,length(dppx));
kappa(I_nz) = -k1(I_nz)./k2(I_nz);
[kmax,ikmax] = max(kappa);
x_corner = ppx(ikmax); y_corner = ppy(ikmax);
% Locate the point on the discrete L-curve which is closest to the
% corner of the spline curve. Prefer a point below and to the
% left of the corner. If the curvature is negative everywhere,
% then define the leftmost point of the L-curve as the corner.
if (kmax < 0)
reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);
else
index = find(lrho < x_corner & leta < y_corner);
if (length(index) > 0)
[dummy,rpi] = min((lrho(index)-x_corner).^2 + (leta(index)-y_corner).^2);
rpi = index(rpi);
else
[dummy,rpi] = min((lrho-x_corner).^2 + (leta-y_corner).^2);
end
reg_c = reg_param(rpi); rho_c = rho(rpi); eta_c = eta(rpi);
end
elseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))
% The L-curve is differentiable; computation of curvature in
% log-log scale is easy.
% Compute g = - curvature of L-curve.
g = lcfun(reg_param,s,beta,xi,1);
% Locate the corner. If the curvature is negative everywhere,
% then define the leftmost point of the L-curve as the corner.
[gmin,gi] = min(g);
reg_c = fminbnd('lcfun',...
reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...
optimset('Display','off'),s,beta,xi,1); % Minimizer.
kappa_max = - lcfun(reg_c,s,beta,xi,1); % Maximum curvature.
if (kappa_max < 0)
lr = length(rho);
reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);
else
f = s./(s + reg_c);
eta_c = norm(f.*xi);
rho_c = norm((1-f).*beta);
if (m>n), rho_c = sqrt(rho_c^2 + norm(b0)^2); end
end
else, error('Illegal method'), end
评论23