---
title: "Bytecode Pattern in Java: Interpreting Instructions with Custom Virtual Machines"
shortTitle: Bytecode
description: "Explore the Bytecode design pattern in Java, including its implementation, real-world examples, and use cases for efficient virtual machine instruction handling."
category: Behavioral
language: en
tag:
- Abstraction
- Code simplification
- Encapsulation
- Game programming
- Performance
- Runtime
---
## Intent of Bytecode Design Pattern
The Bytecode design pattern in Java allows encoding behavior as instructions for a virtual machine, making it a powerful tool in game development and other applications.
## Detailed Explanation of Bytecode Pattern with Real-World Examples
Real-world example
> An analogous real-world example of the Bytecode design pattern can be seen in the process of translating a book into multiple languages. Instead of directly translating the book from the original language into every other language, the book is first translated into a common intermediate language, like Esperanto. This intermediate version is easier to translate because it is simpler and more structured. Translators for each target language then translate from Esperanto into their specific languages. This approach ensures consistency, reduces errors, and simplifies the translation process, similar to how bytecode serves as an intermediate representation to optimize and facilitate the execution of high-level programming languages across different platforms.
In plain words
> Bytecode pattern enables behavior driven by data instead of code.
[gameprogrammingpatterns.com](https://gameprogrammingpatterns.com/bytecode.html) documentation states:
> An instruction set defines the low-level operations that can be performed. A series of instructions is encoded as a sequence of bytes. A virtual machine executes these instructions one at a time, using a stack for intermediate values. By combining instructions, complex high-level behavior can be defined.
## Programmatic Example of Bytecode Pattern in Java
In this programmatic example, we show how the Bytecode pattern in Java can simplify the execution of complex virtual machine instructions through a well-defined set of operations. This real-world example demonstrates how the Bytecode design pattern in Java can streamline game programming by allowing wizards' behavior to be easily adjusted through bytecode instructions.
A team is working on a new game where wizards battle against each other. The wizard behavior needs to be carefully adjusted and iterated hundreds of times through playtesting. It's not optimal to ask the programmer to make changes each time the game designer wants to vary the behavior, so the wizard behavior is implemented as a data-driven virtual machine.
One of the most important game objects is the `Wizard` class.
```java
@AllArgsConstructor
@Setter
@Getter
@Slf4j
public class Wizard {
private int health;
private int agility;
private int wisdom;
private int numberOfPlayedSounds;
private int numberOfSpawnedParticles;
public void playSound() {
LOGGER.info("Playing sound");
numberOfPlayedSounds++;
}
public void spawnParticles() {
LOGGER.info("Spawning particles");
numberOfSpawnedParticles++;
}
}
```
Next, we show the available instructions for our virtual machine. Each of the instructions has its own semantics on how it operates with the stack data. For example, the ADD instruction takes the top two items from the stack, adds them together and pushes the result to the stack.
```java
@AllArgsConstructor
@Getter
public enum Instruction {
LITERAL(1), // e.g. "LITERAL 0", push 0 to stack
SET_HEALTH(2), // e.g. "SET_HEALTH", pop health and wizard number, call set health
SET_WISDOM(3), // e.g. "SET_WISDOM", pop wisdom and wizard number, call set wisdom
SET_AGILITY(4), // e.g. "SET_AGILITY", pop agility and wizard number, call set agility
PLAY_SOUND(5), // e.g. "PLAY_SOUND", pop value as wizard number, call play sound
SPAWN_PARTICLES(6), // e.g. "SPAWN_PARTICLES", pop value as wizard number, call spawn particles
GET_HEALTH(7), // e.g. "GET_HEALTH", pop value as wizard number, push wizard's health
GET_AGILITY(8), // e.g. "GET_AGILITY", pop value as wizard number, push wizard's agility
GET_WISDOM(9), // e.g. "GET_WISDOM", pop value as wizard number, push wizard's wisdom
ADD(10), // e.g. "ADD", pop 2 values, push their sum
DIVIDE(11); // e.g. "DIVIDE", pop 2 values, push their division
// Other properties and methods...
}
```
At the heart of our example is the `VirtualMachine` class. It takes instructions as input and executes them to provide the game object behavior.
```java
@Getter
@Slf4j
public class VirtualMachine {
private final Stack<Integer> stack = new Stack<>();
private final Wizard[] wizards = new Wizard[2];
public VirtualMachine() {
wizards[0] = new Wizard(randomInt(3, 32), randomInt(3, 32), randomInt(3, 32),
0, 0);
wizards[1] = new Wizard(randomInt(3, 32), randomInt(3, 32), randomInt(3, 32),
0, 0);
}
public VirtualMachine(Wizard wizard1, Wizard wizard2) {
wizards[0] = wizard1;
wizards[1] = wizard2;
}
public void execute(int[] bytecode) {
for (var i = 0; i < bytecode.length; i++) {
Instruction instruction = Instruction.getInstruction(bytecode[i]);
switch (instruction) {
case LITERAL:
// Read the next byte from the bytecode.
int value = bytecode[++i];
// Push the next value to stack
stack.push(value);
break;
case SET_AGILITY:
var amount = stack.pop();
var wizard = stack.pop();
setAgility(wizard, amount);
break;
case SET_WISDOM:
amount = stack.pop();
wizard = stack.pop();
setWisdom(wizard, amount);
break;
case SET_HEALTH:
amount = stack.pop();
wizard = stack.pop();
setHealth(wizard, amount);
break;
case GET_HEALTH:
wizard = stack.pop();
stack.push(getHealth(wizard));
break;
case GET_AGILITY:
wizard = stack.pop();
stack.push(getAgility(wizard));
break;
case GET_WISDOM:
wizard = stack.pop();
stack.push(getWisdom(wizard));
break;
case ADD:
var a = stack.pop();
var b = stack.pop();
stack.push(a + b);
break;
case DIVIDE:
a = stack.pop();
b = stack.pop();
stack.push(b / a);
break;
case PLAY_SOUND:
wizard = stack.pop();
getWizards()[wizard].playSound();
break;
case SPAWN_PARTICLES:
wizard = stack.pop();
getWizards()[wizard].spawnParticles();
break;
default:
throw new IllegalArgumentException("Invalid instruction value");
}
LOGGER.info("Executed " + instruction.name() + ", Stack contains " + getStack());
}
}
public void setHealth(int wizard, int amo
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
一、概述 在 Java 开发中,Bytecode 模式是一种强大的设计模式,它允许将行为编码为虚拟机的指令,在游戏开发和其他应用中具有重要作用。本文将详细介绍 Bytecode 模式的意图、解释、编程示例、适用场景以及实际应用。同时,还将提供示例代码的下载链接,方便读者进行学习和实践。 二、Bytecode 设计模式的意图 Java 中的 Bytecode 设计模式允许将行为编码为虚拟机的指令,使其成为游戏开发和其他应用中的强大工具。 三、Bytecode 模式的详细解释及实际示例 实际示例: Bytecode 设计模式的一个类似的现实世界示例可以在将一本书翻译成多种语言的过程中看到。与其直接将书从原始语言翻译成每一种其他语言,不如首先将书翻译成一种常见的中间语言,如世界语。这种中间版本更容易翻译,因为它更简单、更结构化。然后,每个目标语言的翻译人员从世界语翻译成他们的特定语言。这种方法确保了一致性,减少了错误,并简化了翻译过程,类似于字节码作为中间表示来优化和促进高级编程语言在不同平台上的执行。 通俗解释: Bytecode 模式使行为由数据而不是代码驱动。 gameprogramm
资源推荐
资源详情
资源评论
收起资源包目录
bytecode.zip (12个子文件)
bytecode
pom.xml 2KB
src
test
java
com
iluwatar
bytecode
AppTest.java 2KB
VirtualMachineTest.java 5KB
util
InstructionConverterUtilTest.java 3KB
main
java
com
iluwatar
bytecode
Instruction.java 3KB
App.java 4KB
VirtualMachine.java 5KB
Wizard.java 2KB
util
InstructionConverterUtil.java 3KB
etc
bytecode.urm.png 84KB
bytecode.urm.puml 2KB
README.md 13KB
共 12 条
- 1
资源评论
道长不会写代码
- 粉丝: 2534
- 资源: 117
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 事后修复了 Unicode 文本中的乱码和其他故障 .zip
- 了解 Python 的 A 到 Z.zip
- 为 Pythonista iOS 应用编写的 Python 脚本集合.zip
- PREEvision工具在汽车电子与电气系统设计中的全方位支持
- 汽车制造:ECU软件刷写技术及优化方法提升主机厂生产效率
- stm32f1x必要启动文件.7z
- 三次贝塞尔最小二乘拟-Cubic Bezier Least Square Fitting
- 基因频率的稳定性和遗传特性在自然选择下仿真
- 一本关于 numpy 矢量化技术的开放获取书籍,Nicolas P. Rougier,2017 年.zip
- Office2021 命令式下载和安装工具
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功