# Readme
![repo-size](https://img.shields.io/github/repo-size/SystemRage/py-kms)
![open-issues](https://img.shields.io/github/issues/SystemRage/py-kms)
![last-commit](https://img.shields.io/github/last-commit/SystemRage/py-kms/master)
![docker-status](https://img.shields.io/docker/cloud/build/pykmsorg/py-kms)
![docker-pulls](https://img.shields.io/docker/pulls/pykmsorg/py-kms)
![read-the-docs](https://img.shields.io/readthedocs/py-kms)
***
## History
_py-kms_ is a port of node-kms created by [cyrozap](http://forums.mydigitallife.info/members/183074-markedsword), which is a port of either the C#, C++, or .NET implementations of KMS Emulator. The original version was written by [CODYQX4](http://forums.mydigitallife.info/members/89933-CODYQX4) and is derived from the reverse-engineered code of Microsoft's official KMS.
## Features
- Responds to `v4`, `v5`, and `v6` KMS requests.
- Supports activating:
- Windows Vista
- Windows 7
- Windows 8
- Windows 8.1
- Windows 10 ( 1511 / 1607 / 1703 / 1709 / 1803 / 1809 )
- Windows 10 ( 1903 / 1909 / 20H1 )
- Windows Server 2008
- Windows Server 2008 R2
- Windows Server 2012
- Windows Server 2012 R2
- Windows Server 2016
- Windows Server 2019
- Microsoft Office 2010 ( Volume License )
- Microsoft Office 2013 ( Volume License )
- Microsoft Office 2016 ( Volume License )
- Microsoft Office 2019 ( Volume License )
- It's written in Python (tested with Python 3.6.9).
- Supports execution by `Docker`, `systemd`, `Upstart` and many more...
- Includes a GUI for simple managing.
- Uses `sqlite` for persistent data storage.
## Documentation
The wiki has been completly reworked and is now available on [readthedocs.com](https://py-kms.readthedocs.io/en/latest/). It should you provide all necessary information how to setup and to use _py-kms_ , all without clumping this readme. The documentation also houses more details about activation with _py-kms_ and how to get GVLK keys.
## Quick start
- To start the server, execute `python3 pykms_Server.py [IPADDRESS] [PORT]`, the default _IPADDRESS_ is `0.0.0.0` ( all interfaces ) and the default _PORT_ is `1688`. Note that both the address and port are optional. It's allowed to use IPv4 and IPv6 addresses. If you have a IPv6-capable dual-stack OS, a dual-stack socket is created when using a IPv6 address.
- To start the server automatically using Docker, execute `docker run -d --name py-kms --restart always -p 1688:1688 pykmsorg/py-kms`.
- To show the help pages type: `python3 pykms_Server.py -h` and `python3 pykms_Client.py -h`.
- For launching _py-kms_ GUI make the file `pykms_Server.py` executable with `chmod +x /path/to/folder/py-kms/pykms_Server.py`, then simply run `pykms_Server.py` by double-clicking.
## License
- _py-kms_ is [![Unlicense](https://img.shields.io/badge/license-unlicense-lightgray.svg)](https://github.com/SystemRage/py-kms/blob/master/LICENSE)
- _py-kms GUI_ is [![MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://github.com/SystemRage/py-kms/blob/master/LICENSE.gui.md) © Matteo ℱan
Kwanxian
- 粉丝: 9
- 资源: 2
最新资源
- 【创新无忧】基于花朵授粉优化算法FPA优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于花朵授粉优化算法FPA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于蝗虫优化算法GOA优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于蝗虫优化算法GOA优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于蝗虫优化算法GOA优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于蝗虫优化算法GOA优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于蝗虫优化算法GOA优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于蝗虫优化算法GOA优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于灰狼优化算法GWO优化广义神经网络GRNN实现电机故障诊断附matlab代码.rar
- 【创新无忧】基于灰狼优化算法GWO优化广义神经网络GRNN实现光伏预测附matlab代码.rar
- 【创新无忧】基于蝗虫优化算法GOA优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
- 【创新无忧】基于灰狼优化算法GWO优化广义神经网络GRNN实现数据回归预测附matlab代码.rar
- 【创新无忧】基于灰狼优化算法GWO优化极限学习机ELM实现乳腺肿瘤诊断附matlab代码.rar
- 【创新无忧】基于灰狼优化算法GWO优化极限学习机KELM实现故障诊断附matlab代码.rar
- 【创新无忧】基于灰狼优化算法GWO优化相关向量机RVM实现北半球光伏数据预测附matlab代码.rar
- 【创新无忧】基于灰狼优化算法GWO优化相关向量机RVM实现数据多输入单输出回归预测附matlab代码.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
评论0