# Snowboy Hotword Detection
by [KITT.AI](http://kitt.ai).
[Home Page](https://snowboy.kitt.ai)
[Full Documentation](http://docs.kitt.ai/snowboy) and [FAQ](http://docs.kitt.ai/snowboy#faq)
[Discussion Group](https://groups.google.com/a/kitt.ai/forum/#!forum/snowboy-discussion) (or send email to snowboy-discussion@kitt.ai)
[Commercial application FAQ](README_commercial.md)
Version: 1.3.0 (2/19/2018)
## Alexa support
Snowboy now brings hands-free experience to the [Alexa AVS sample app](https://github.com/alexa/alexa-avs-sample-app) on Raspberry Pi! See more info below regarding the performance and how you can use other hotword models.
**Performance**
The performance of hotword detection usually depends on the actual environment, e.g., is it used with a quality microphone, is it used on the street, in a kitchen, or is there any background noise, etc. So we feel it is best for the users to evaluate it in their real environment. For the evaluation purpose, we have prepared an Android app which can be installed and run out of box: [SnowboyAlexaDemo.apk](https://github.com/Kitt-AI/snowboy/raw/master/resources/alexa/SnowboyAlexaDemo.apk) (please uninstall any previous versions first if you have installed this app before).
**Personal model**
* Create your personal hotword model through our [website](https://snowboy.kitt.ai) or [hotword API](https://snowboy.kitt.ai/api/v1/train/)
* Replace the hotword model in [Alexa AVS sample app](https://github.com/alexa/alexa-avs-sample-app) (after installation) with your personal model
```
# Please replace YOUR_PERSONAL_MODEL.pmdl with the personal model you just
# created, and $ALEXA_AVS_SAMPLE_APP_PATH with the actual path where you
# cloned the Alexa AVS sample app repository.
cp YOUR_PERSONAL_MODEL.pmdl $ALEXA_AVS_SAMPLE_APP_PATH/samples/wakeWordAgent/ext/resources/alexa.umdl
```
* Set `APPLY_FRONTEND` to `false` and update `SENSITIVITY` in the [Alexa AVS sample app code](https://github.com/alexa/alexa-avs-sample-app/blob/master/samples/wakeWordAgent/src/KittAiSnowboyWakeWordEngine.cpp) and re-compile
```
# Please replace $ALEXA_AVS_SAMPLE_APP_PATH with the actual path where you
# cloned the Alexa AVS sample app repository.
cd $ALEXA_AVS_SAMPLE_APP_PATH/samples/wakeWordAgent/src/
# Modify KittAiSnowboyWakeWordEngine.cpp and update SENSITIVITY at line 28.
# Modify KittAiSnowboyWakeWordEngine.cpp and set APPLY_FRONTEND to false at
# line 30.
make
```
* Run the wake word agent with engine set to `kitt_ai`!
**Universal model**
* Replace the hotword model in [Alexa AVS sample app](https://github.com/alexa/alexa-avs-sample-app) (after installation) with your universal model
```
# Please replace YOUR_UNIVERSAL_MODEL.umdl with the personal model you just
# created, and $ALEXA_AVS_SAMPLE_APP_PATH with the actual path where you
# cloned the Alexa AVS sample app repository.
cp YOUR_UNIVERSAL_MODEL.umdl $ALEXA_AVS_SAMPLE_APP_PATH/samples/wakeWordAgent/ext/resources/alexa.umdl
```
* Update `SENSITIVITY` in the [Alexa AVS sample app code](https://github.com/alexa/alexa-avs-sample-app/blob/master/samples/wakeWordAgent/src/KittAiSnowboyWakeWordEngine.cpp) and re-compile
```
# Please replace $ALEXA_AVS_SAMPLE_APP_PATH with the actual path where you
# cloned the Alexa AVS sample app repository.
cd $ALEXA_AVS_SAMPLE_APP_PATH/samples/wakeWordAgent/src/
# Modify KittAiSnowboyWakeWordEngine.cpp and update SENSITIVITY at line 28.
make
```
* Run the wake word agent with engine set to `kitt_ai`!
## Hotword as a Service
Snowboy now offers **Hotword as a Service** through the ``https://snowboy.kitt.ai/api/v1/train/``
endpoint. Check out the [Full Documentation](http://docs.kitt.ai/snowboy) and example [Python/Bash script](examples/REST_API) (other language contributions are very welcome).
As a quick start, ``POST`` to https://snowboy.kitt.ai/api/v1/train:
{
"name": "a word",
"language": "en",
"age_group": "10_19",
"gender": "F",
"microphone": "mic type",
"token": "<your auth token>",
"voice_samples": [
{wave: "<base64 encoded wave data>"},
{wave: "<base64 encoded wave data>"},
{wave: "<base64 encoded wave data>"}
]
}
then you'll get a trained personal model in return!
## Introduction
Snowboy is a customizable hotword detection engine for you to create your own
hotword like "OK Google" or "Alexa". It is powered by deep neural networks and
has the following properties:
* **highly customizable**: you can freely define your own magic phrase here –
let it be “open sesame”, “garage door open”, or “hello dreamhouse”, you name it.
* **always listening** but protects your privacy: Snowboy does not use Internet
and does *not* stream your voice to the cloud.
* light-weight and **embedded**: it even runs on a Raspberry Pi and consumes
less than 10% CPU on the weakest Pi (single-core 700MHz ARMv6).
* Apache licensed!
Currently Snowboy supports (look into the [lib](lib) folder):
* all versions of Raspberry Pi (with Raspbian based on Debian Jessie 8.0)
* 64bit Mac OS X
* 64bit Ubuntu 14.04
* iOS
* Android
* ARM64 (aarch64, Ubuntu 16.04)
It ships in the form of a **C++ library** with language-dependent wrappers
generated by SWIG. We welcome wrappers for new languages -- feel free to send a
pull request!
Currently we have built wrappers for:
* C/C++
* Java/Android
* Go (thanks to @brentnd and @deadprogram)
* Node (thanks to @evancohen and @nekuz0r)
* Perl (thanks to @iboguslavsky)
* Python2/Python3
* iOS/Swift3 (thanks to @grimlockrocks)
* iOS/Object-C (thanks to @patrickjquinn)
If you want support on other hardware/OS, please send your request to
[snowboy@kitt.ai](mailto:snowboy.kitt.ai)
Note: **Snowboy does not support Windows** yet. Please build Snowboy on *nix platforms.
## Pricing for Snowboy models
Hackers: free
* Personal use
* Community support
Business: please contact us at [snowboy@kitt.ai](mailto:snowboy@kitt.ai)
* Personal use
* Commercial license
* Technical support
## Pretrained universal models
We provide pretrained universal models for testing purpose. When you test those
models, bear in mind that they may not be optimized for your specific device or
environment.
Here is the list of the models, and the parameters that you have to use for them:
* **resources/alexa/alexa-avs-sample-app/alexa.umdl**: Universal model for the hotword "Alexa" optimized for [Alexa AVS sample app](https://github.com/alexa/alexa-avs-sample-app). Set SetSensitivity to 0.6, and set ApplyFrontend to true. This is so far the best "Alexa" model we released publicly, when ApplyFrontend is set to true.
* **resources/models/snowboy.umdl**: Universal model for the hotword "Snowboy". Set SetSensitivity to 0.5 and ApplyFrontend to false.
* **resources/models/jarvis.umdl**: Universal model for the hotword "Jarvis" (https://snowboy.kitt.ai/hotword/29). It has two different models for the hotword Jarvis, so you have to use two sensitivites. Set sensitivities to "0.8,0.80" and ApplyFrontend to true.
* **resources/models/smart_mirror.umdl**: Universal model for the hotword "Smart Mirror" (https://snowboy.kitt.ai/hotword/47). Set sensitivity to Sensitivity to 0.5, and ApplyFrontend to false.
## Precompiled node module
Snowboy is available in the form of a native node module precompiled for:
64 bit Ubuntu, MacOS X, and the Raspberry Pi (Raspbian 8.0+). For quick
installation run:
npm install --save snowboy
For sample usage see the `examples/Node` folder. You may have to install
dependencies like `fs`, `wav` or `node-record-lpcm16` depending on which script
you use.
## Precompiled Binaries with Python Demo
* 64 bit Ubuntu [14.04](https://s3-us-west-2.amazonaws.com/snowboy/snowboy-releases/ubuntu1404-x86_64-1.3.0.tar.bz2)
* [MacOS X](https://s3-us-west-2.amazonaws.com/snowboy/snowboy-releases/osx-x86_64-1.3.0.tar.bz2)
* Raspberry Pi with Raspbian 8.0, all versions
([1/2/3/Zero](https://s3-us-west-2.amazonaws.com/snowboy/snowboy-releases/rpi-arm
没有合适的资源?快使用搜索试试~ 我知道了~
spotmicro
共362个文件
py:86个
png:41个
h:27个
需积分: 10 5 下载量 122 浏览量
2021-03-18
11:46:52
上传
评论
收藏 31.53MB ZIP 举报
温馨提示
在上方添加了语音控制机器狗的功能。 现货微型四足动物项目 机器人视频: : 概述 该项目是Spot Micro四足动物(四足的开放源代码机器人)的源代码。此代码能够对具有坐,站,角指令和行走功能的单点微型机器人进行键盘控制。该软件在运行Ubuntu 16.04的Raspberry Pi 3B计算机上实现。 该软件由ROS框架中的C ++和python节点组成。 硬件: 所使用的框架是KDY0523开发的Thingverse Spot Micro框架。有关装配硬件的其他详细信息,请参见下面的thingverse页面。已打印cls6336hv伺服器的文件,这些文件也适合我使用的hv5523mg伺服器。 组件清单: 电脑:Raspberry Pi 3B 伺服控制板:PCA9685,通过i2c控制 伺服:12 x PDI-HV5523MG 液晶面板:16x2 i2c液晶面板 电池:2s 400
资源详情
资源评论
资源推荐
收起资源包目录
spotmicro (362个子文件)
libsnowboy-detect.a 1.33MB
gm_continuous_digit.abnf 376B
linuxrec.c 16KB
speech_recognizer.c 9KB
demo.c 7KB
iat_online_sample.c 6KB
tts_online_sample.c 6KB
demo.cc 8KB
demo2.cc 4KB
snowboy-detect-c-wrapper.cc 3KB
msc.cfg 684B
SnowboyReconfigure.cfg 339B
FindBLAS.cmake 13KB
i2cpwm_controller.cpp 63KB
spot_micro_motion_cmd.cpp 17KB
spot_micro_walk.cpp 11KB
spot_micro_state.cpp 10KB
iat_publish.cpp 8KB
tts_sub.cpp 7KB
hotword_detector_node.cpp 6KB
spot_micro_stand.cpp 3KB
spot_micro_transition_stand.cpp 3KB
spot_micro_transition_idle.cpp 3KB
hotword_detector.cpp 1KB
spot_micro_motion_cmd_node.cpp 1KB
spot_micro_idle.cpp 1KB
iat_sub.cpp 657B
doxygen.css 25KB
doxygen.css 25KB
tabs.css 1KB
styles.css 0B
styles.css 0B
urec.data 78B
u.data 12B
demo 32KB
Doxyfile 106KB
spot_micro_walking.gif 7.27MB
.gitignore 461B
.gitignore 240B
.gitignore 21B
.gitmodules 381B
.gitmodules 102B
binding.gyp 2KB
msp_errors.h 36KB
msp_errors.h 36KB
msp_cmn.h 11KB
msp_cmn.h 11KB
qisr.h 10KB
qisr.h 10KB
qise.h 9KB
qise.h 9KB
snowboy-detect.h 9KB
qtts.h 8KB
qtts.h 8KB
spot_micro_motion_cmd.h 6KB
msp_types.h 4KB
msp_types.h 4KB
linuxrec.h 3KB
spot_micro_state.h 3KB
spot_micro_walk.h 3KB
rate_limited_first_order_filter.h 2KB
hotword_detector.h 2KB
speech_recognizer.h 2KB
snowboy-detect-c-wrapper.h 1KB
command.h 1KB
spot_micro_transition_stand.h 1KB
spot_micro_transition_idle.h 1KB
spot_micro_stand.h 976B
spot_micro_idle.h 622B
formats.h 399B
i2cpwm__controller_8cpp_source.html 144KB
group___topics.html 28KB
group___services.html 25KB
index.html 13KB
i2cpwm__controller_8cpp.html 11KB
files.html 3KB
globals.html 3KB
dir_68267d1309a1af8e8297ef4c3efbcdba.html 3KB
globals_func.html 3KB
modules.html 2KB
header.html 2KB
footer.html 716B
snowboy-detect-swig.i 525B
snowboy-detect-swig.i 525B
iat 37KB
iat_online_record_sample 71KB
MANIFEST.in 257B
jquery.js 143KB
package.json 1KB
tsconfig.json 905B
snowboy_wakeup.launch 2KB
motion_cmd.launch 2KB
keyboard_command.launch 1KB
spot_voice_walk.launch 912B
keyboard_move.launch 811B
spot_walk.launch 702B
show_and_move_model.launch 632B
spot_micro_motion_cmd.launch 477B
show_model.launch 445B
start_plotting.launch 296B
共 362 条
- 1
- 2
- 3
- 4
Aurora曙光
- 粉丝: 914
- 资源: 4528
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- comsol燃料电池模型,等温和不等温的均有 下面是验证图以及参考文献
- 【Web网页设计制作-毕业设计期末大作业源码】漂亮的黑色导航jq幻灯商务服务html5模板5552.zip
- 【Web网页设计制作-毕业设计期末大作业源码】漂亮大图商务简洁响应式整站模板4889.zip
- 【Web网页设计制作-毕业设计期末大作业源码】漂亮全屏大气互联网产品专题html5模板5301.zip
- 【Web网页设计制作-毕业设计期末大作业源码】漂亮美女模特美妆企业响应式html5模板4902.zip
- 【Web网页设计制作-毕业设计期末大作业源码】漂亮木纹背景家居家装企业网站模板5483.zip
- 【Web网页设计制作-毕业设计期末大作业源码】漂亮的CSS3动画互联网商务整站模板5317.zip
- 【Web网页设计制作-毕业设计期末大作业源码】浅绿色个性纯色HTML5模板下载5473.zip
- 【Web网页设计制作-毕业设计期末大作业源码】青春时尚漂亮运动APP软件官网模板5150.zip
- 【Web网页设计制作-毕业设计期末大作业源码】清爽大气商业外贸企业官网整站模板5336.zip
- 【Web网页设计制作-毕业设计期末大作业源码】漂亮响应式互联网科技公司wordpress主题模板5299.zip
- 【Web网页设计制作-毕业设计期末大作业源码】深蓝色金融证券公司企业网站模板4928.zip
- 【Web网页设计制作-毕业设计期末大作业源码】深色天空背景宽屏跳转产品展示模板5312.zip
- 【Web网页设计制作-毕业设计期末大作业源码】摄影图片画廊幻灯展示HTML5模板推荐5553.zip
- 【Web网页设计制作-毕业设计期末大作业源码】深蓝色商务UI设计公司企业模板下载4910.zip
- 基于拓展卡尔曼滤波的车辆质量与道路坡度估计 车辆坡度与质量识别模型,基于扩展卡尔曼滤波,估计曲线与实际误差合理 先用递归最小二乘法(RLS)质量识别,最后利用扩展卡尔曼坡度识别(EKF) 送纹献
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0