# Open LPR
**Free forever Open Source License Plate Recognition software which uses deep neural networks to detect license plates, classify them and perform OCR.**
Following image illustrates a dashboard built using nodered that shows real time LPR results. NodeRED can be used to build RESTful services, integrate with other systems such as over modbus to extend the business functionality of the system.
![In Action](https://rawcdn.githack.com/faisalthaheem/open-lpr/f60aa4c7a48470d278d814804e3d53eb6f01318a/docs/alpr-result.jpg)
Shows 349253 as the license plate text, and qa.priv_broad as the type of number plate. An abundance of information such as bounding boxes, confidence scores etc are availabel in the raw JSON data published by the services and available to NodeRED and any other integrating service for consumption.
# Documentation & Updates
Head over to the wiki for [documentation](https://github.com/faisalthaheem/open-lpr/wiki/Documentation).
**Jan 13, 2021**: Ported to tensorflow 2 with compatibility mode for tensorflow 1.
# Quick Start
1. Install [Docker](https://www.docker.com/get-started)
2. Open shell and issue build-images.sh or build-images.bat and wait for the process to complete
3. While on shell issue docker-compose up -d and wait for services to start
4. Open browser and navigate to [dashboard](http://localhost:1890/show-dashboard)
5. Using any FTP software (or configure your camera) connect to localhost port 2121 with username "user" and password "12345" (without quotes) and upload upto a Full-HD image
The dashboard will update to reflect the detected plate and OCR text like in the image above
# Milestones
## Work on Documentation is in progress.
![Milestones](https://raw.githack.com/faisalthaheem/open-lpr/master/docs/Milestones.png)
# Overview
Open LPR is a distributed system aimed towards ease of management and high LPR throughput. The core consists of modules to perform the tasks of plate detection, classification and OCR.
Ground up the system is built to be scalable and can handle the load of a single site to a city wide area.
The entire stack is built on top of docker containers and is available in cpu only and gpu supported runtimes.
Tensorflow, Keras and OpenCV are used amongst other libraries to deliver the service.
![Overview](https://rawcdn.githack.com/faisalthaheem/open-lpr/b701dd0df6278ee4209c5671af3b345d096bfe62/docs/overview-v2.png)
没有合适的资源?快使用搜索试试~ 我知道了~
open-lpr:开源和免费车牌识别软件
共50个文件
py:11个
dockerfile:7个
png:5个
需积分: 40 2 下载量 176 浏览量
2021-05-04
19:02:16
上传
评论
收藏 920KB ZIP 举报
温馨提示
公开LPR 永久免费的开源车牌识别软件,该软件使用深度神经网络检测车牌,对其进行分类并执行OCR。 下图显示了使用nodered构建的仪表板,该仪表板显示了实时LPR结果。 NodeRED可用于构建RESTful服务,并与其他系统集成(例如通过Modbus),以扩展系统的业务功能。 显示349253作为车牌文本,并显示qa.priv_broad作为车牌类型。 服务发布的原始JSON数据中包含诸如边界框,置信度得分等大量信息,可供NodeRED和任何其他集成服务使用。 文档和更新 前往Wiki获取。 2021年1月13日:移植到具有tensorflow 1兼容模式的tensorflow 2 快速开始 安装 打开外壳并发出build-images.sh或build-images.bat并等待该过程完成 在shell问题上时,docker-compose up -d并等待服务启动 打开
资源详情
资源评论
资源推荐
收起资源包目录
open-lpr-master.zip (50个子文件)
open-lpr-master
static-html-content
dashboard.html 3KB
ocr
ocr.yaml 1KB
model
.gitkeep 0B
ocr.py 10KB
.gitignore 1KB
build-images.bat 637B
run.sh 61B
platedetector
platedetector.py 8KB
platedetector.yaml 1KB
build-images.sh 653B
plateclassifier
plateclassifier.py 9KB
model
.gitkeep 0B
plateclassifier.yaml 1KB
docker-compose.yml 731B
docs
openlpr-introduction-Architecture-opaque.png 221KB
Milestones.xml 3KB
OpenLPR.xml 2KB
alpr-result.jpg 275KB
overview.png 40KB
overview-v2.png 181KB
Milestones.png 99KB
openlpr-introduction-availability-opaque.png 50KB
OpenLPR-v2.xml 56KB
LICENSE 11KB
docker
ocr
Dockerfile 161B
platedetector
Dockerfile 289B
plateclassifier
Dockerfile 221B
nodered
Dockerfile 226B
flows.json 5KB
settings.js 12KB
ftp
Dockerfile 216B
python3dev
Dockerfile 46B
lpr-base-img
Dockerfile 200B
ftp
ftp.service.yaml 519B
__init__.py 0B
ftp.service.py 7KB
__init__.py 18B
scripts
mongo-init.js 190B
report.txt 5KB
docker-compose.override.yml 1KB
make.requirements.sh 166B
README.MD 2KB
shared
utils.py 11KB
obj_detector.py 3KB
__init__.py 0B
requirements.txt 175B
install-python-deps.sh 193B
amqp.py 21KB
empty 0B
cvfuncs.py 47KB
共 50 条
- 1
丰雅
- 粉丝: 641
- 资源: 4580
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0