# Open LPR
**Free forever Open Source License Plate Recognition software which uses deep neural networks to detect license plates, classify them and perform OCR.**
Following image illustrates a dashboard built using nodered that shows real time LPR results. NodeRED can be used to build RESTful services, integrate with other systems such as over modbus to extend the business functionality of the system.
![In Action](https://rawcdn.githack.com/faisalthaheem/open-lpr/f60aa4c7a48470d278d814804e3d53eb6f01318a/docs/alpr-result.jpg)
Shows 349253 as the license plate text, and qa.priv_broad as the type of number plate. An abundance of information such as bounding boxes, confidence scores etc are availabel in the raw JSON data published by the services and available to NodeRED and any other integrating service for consumption.
# Documentation & Updates
Head over to the wiki for [documentation](https://github.com/faisalthaheem/open-lpr/wiki/Documentation).
**Jan 13, 2021**: Ported to tensorflow 2 with compatibility mode for tensorflow 1.
# Quick Start
1. Install [Docker](https://www.docker.com/get-started)
2. Open shell and issue build-images.sh or build-images.bat and wait for the process to complete
3. While on shell issue docker-compose up -d and wait for services to start
4. Open browser and navigate to [dashboard](http://localhost:1890/show-dashboard)
5. Using any FTP software (or configure your camera) connect to localhost port 2121 with username "user" and password "12345" (without quotes) and upload upto a Full-HD image
The dashboard will update to reflect the detected plate and OCR text like in the image above
# Milestones
## Work on Documentation is in progress.
![Milestones](https://raw.githack.com/faisalthaheem/open-lpr/master/docs/Milestones.png)
# Overview
Open LPR is a distributed system aimed towards ease of management and high LPR throughput. The core consists of modules to perform the tasks of plate detection, classification and OCR.
Ground up the system is built to be scalable and can handle the load of a single site to a city wide area.
The entire stack is built on top of docker containers and is available in cpu only and gpu supported runtimes.
Tensorflow, Keras and OpenCV are used amongst other libraries to deliver the service.
![Overview](https://rawcdn.githack.com/faisalthaheem/open-lpr/b701dd0df6278ee4209c5671af3b345d096bfe62/docs/overview-v2.png)
丰雅
- 粉丝: 742
- 资源: 4580
最新资源
- 12-【培训PPT】-25-销售部员工入职培训销售培训技巧.pptx
- 12-【培训PPT】-26-新员工入职安全教育培训.pptx
- 12-【培训PPT】-29-新员工入职学习培训.pptx
- 12-【培训PPT】-28-新员工质量培训PPT.ppt
- weixin小程序项目家庭大厨微信小程序+ssm.zip
- weixin小程序项目家庭事务管理微信小程序+ssm.zip
- Web前端大作业-个人网页设计html+css+javascript(高分项目)
- weixin小程序项目家庭记账本的设计与实现+ssm.zip
- weixin小程序项目家具购物小程序+php.zip
- weixin小程序项目计算机实验室排课与查询系统+ssm.zip
- weixin小程序项目家庭财务管理系统的设计与实现+ssm.zip
- weixin小程序项目基于小程序的购物系统设计与实现+ssm.zip
- weixin小程序项目基于移动平台的远程在线诊疗系统+ssm.zip
- weixin小程序项目基于小程序的老孙电子点菜系统开发设计与实现+ssm.zip
- weixin小程序项目基于微信小程序的网上商城+ssm.zip
- weixin小程序项目基于微信小程序的影院选座系统+ssm.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
评论0