[![Latest Release](https://img.shields.io/github/release/VictoriaMetrics/VictoriaMetrics.svg?style=flat-square)](https://github.com/VictoriaMetrics/VictoriaMetrics/releases/latest)
[![Docker Pulls](https://img.shields.io/docker/pulls/victoriametrics/victoria-metrics.svg?maxAge=604800)](https://hub.docker.com/r/victoriametrics/victoria-metrics)
[![Slack](https://img.shields.io/badge/join%20slack-%23victoriametrics-brightgreen.svg)](http://slack.victoriametrics.com/)
[![GitHub license](https://img.shields.io/github/license/VictoriaMetrics/VictoriaMetrics.svg)](https://github.com/VictoriaMetrics/VictoriaMetrics/blob/master/LICENSE)
[![Go Report](https://goreportcard.com/badge/github.com/VictoriaMetrics/VictoriaMetrics)](https://goreportcard.com/report/github.com/VictoriaMetrics/VictoriaMetrics)
[![Build Status](https://github.com/VictoriaMetrics/VictoriaMetrics/workflows/main/badge.svg)](https://github.com/VictoriaMetrics/VictoriaMetrics/actions)
[![codecov](https://codecov.io/gh/VictoriaMetrics/VictoriaMetrics/branch/master/graph/badge.svg)](https://codecov.io/gh/VictoriaMetrics/VictoriaMetrics)
![Victoria Metrics logo](logo.png "Victoria Metrics")
## VictoriaMetrics
VictoriaMetrics is a fast, cost-effective and scalable monitoring solution and time series database.
It is available in [binary releases](https://github.com/VictoriaMetrics/VictoriaMetrics/releases),
[docker images](https://hub.docker.com/r/victoriametrics/victoria-metrics/), [Snap package](https://snapcraft.io/victoriametrics)
and in [source code](https://github.com/VictoriaMetrics/VictoriaMetrics). Just download VictoriaMetrics and see [how to start it](#how-to-start-victoriametrics).
If you use Ubuntu, then just run `snap install victoriametrics` in order to install and run it.
Then read [Prometheus setup](#prometheus-setup) and [Grafana setup](#grafana-setup) docs.
Cluster version is available [here](https://github.com/VictoriaMetrics/VictoriaMetrics/tree/cluster).
See additional docs at our [Wiki](https://github.com/VictoriaMetrics/VictoriaMetrics/wiki).
[Contact us](mailto:info@victoriametrics.com) if you need paid enterprise support for VictoriaMetrics.
See [features available for enterprise customers](https://victoriametrics.com/enterprise.html).
## Case studies and talks
Alphabetically sorted links to case studies:
* [adidas](https://victoriametrics.github.io/CaseStudies.html#adidas)
* [Adsterra](https://victoriametrics.github.io/CaseStudies.html#adsterra)
* [ARNES](https://victoriametrics.github.io/CaseStudies.html#arnes)
* [Brandwatch](https://victoriametrics.github.io/CaseStudies.html#brandwatch)
* [CERN](https://victoriametrics.github.io/CaseStudies.html#cern)
* [COLOPL](https://victoriametrics.github.io/CaseStudies.html#colopl)
* [Dreamteam](https://victoriametrics.github.io/CaseStudies.html#dreamteam)
* [Idealo.de](https://victoriametrics.github.io/CaseStudies.html#idealode)
* [MHI Vestas Offshore Wind](https://victoriametrics.github.io/CaseStudies.html#mhi-vestas-offshore-wind)
* [Synthesio](https://victoriametrics.github.io/CaseStudies.html#synthesio)
* [Wedos.com](https://victoriametrics.github.io/CaseStudies.html#wedoscom)
* [Wix.com](https://victoriametrics.github.io/CaseStudies.html#wixcom)
* [Zerodha](https://victoriametrics.github.io/CaseStudies.html#zerodha)
* [zhihu](https://victoriametrics.github.io/CaseStudies.html#zhihu)
## Prominent features
* VictoriaMetrics can be used as long-term storage for Prometheus or for [vmagent](https://victoriametrics.github.io/vmagent.html).
See [these docs](#prometheus-setup) for details.
* VictoriaMetrics supports [Prometheus querying API](https://prometheus.io/docs/prometheus/latest/querying/api/), so it can be used as Prometheus drop-in replacement in Grafana.
* VictoriaMetrics implements [MetricsQL](https://victoriametrics.github.io/MetricsQL.html) query language backwards compatible with PromQL.
* VictoriaMetrics provides global query view. Multiple Prometheus instances or any other data sources may ingest data into VictoriaMetrics.
Later this data may be queried via a single query.
* High performance and good scalability for both [inserts](https://medium.com/@valyala/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b)
and [selects](https://medium.com/@valyala/when-size-matters-benchmarking-victoriametrics-vs-timescale-and-influxdb-6035811952d4).
[Outperforms InfluxDB and TimescaleDB by up to 20x](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae).
* [Uses 10x less RAM than InfluxDB](https://medium.com/@valyala/insert-benchmarks-with-inch-influxdb-vs-victoriametrics-e31a41ae2893)
and [up to 7x less RAM than Prometheus, Thanos or Cortex](https://valyala.medium.com/prometheus-vs-victoriametrics-benchmark-on-node-exporter-metrics-4ca29c75590f)
when dealing with millions of unique time series (aka high cardinality).
* Optimized for time series with high churn rate. Think about [prometheus-operator](https://github.com/coreos/prometheus-operator) metrics from frequent deployments in Kubernetes.
* High data compression, so [up to 70x more data points](https://medium.com/@valyala/when-size-matters-benchmarking-victoriametrics-vs-timescale-and-influxdb-6035811952d4)
may be crammed into limited storage comparing to TimescaleDB
and [up to 7x less storage space is required comparing to Prometheus, Thanos or Cortex](https://valyala.medium.com/prometheus-vs-victoriametrics-benchmark-on-node-exporter-metrics-4ca29c75590f).
* Optimized for storage with high-latency IO and low IOPS (HDD and network storage in AWS, Google Cloud, Microsoft Azure, etc).
See [graphs from these benchmarks](https://medium.com/@valyala/high-cardinality-tsdb-benchmarks-victoriametrics-vs-timescaledb-vs-influxdb-13e6ee64dd6b).
* A single-node VictoriaMetrics may substitute moderately sized clusters built with competing solutions such as Thanos, M3DB, Cortex, InfluxDB or TimescaleDB.
See [vertical scalability benchmarks](https://medium.com/@valyala/measuring-vertical-scalability-for-time-series-databases-in-google-cloud-92550d78d8ae),
[comparing Thanos to VictoriaMetrics cluster](https://medium.com/@valyala/comparing-thanos-to-victoriametrics-cluster-b193bea1683)
and [Remote Write Storage Wars](https://promcon.io/2019-munich/talks/remote-write-storage-wars/) talk
from [PromCon 2019](https://promcon.io/2019-munich/talks/remote-write-storage-wars/).
* Easy operation:
* VictoriaMetrics consists of a single [small executable](https://medium.com/@valyala/stripping-dependency-bloat-in-victoriametrics-docker-image-983fb5912b0d) without external dependencies.
* All the configuration is done via explicit command-line flags with reasonable defaults.
* All the data is stored in a single directory pointed by `-storageDataPath` command-line flag.
* Easy and fast backups from [instant snapshots](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282)
to S3 or GCS with [vmbackup](https://victoriametrics.github.io/vmbackup.html) / [vmrestore](https://victoriametrics.github.io/vmrestore.html).
See [this article](https://medium.com/@valyala/speeding-up-backups-for-big-time-series-databases-533c1a927883) for more details.
* Storage is protected from corruption on unclean shutdown (i.e. OOM, hardware reset or `kill -9`) thanks to [the storage architecture](https://medium.com/@valyala/how-victoriametrics-makes-instant-snapshots-for-multi-terabyte-time-series-data-e1f3fb0e0282).
* Supports metrics' scraping, ingestion and [backfilling](#backfilling) via the following protocols:
* [Metrics from Prometheus exporters](https://github.com/prometheus/docs/blob/master/content/docs/instrumenting/exposition_formats.md#text-based-format)
such as [node_exporter](https://github.com/prometheus/node_exporter). See [these docs](#how-to-scrape-prometheus-exporters-such-as-node-exporter
没有合适的资源?快使用搜索试试~ 我知道了~
VictoriaMetrics:VictoriaMetrics:快速,经济高效的监控解决方案和时间序列数据库
共2000个文件
go:2070个
md:109个
license:58个
需积分: 50 3 下载量 56 浏览量
2021-02-04
23:05:42
上传
评论
收藏 11.24MB ZIP 举报
温馨提示
维多利亚度量 VictoriaMetrics是一个快速,经济高效且可扩展的监视解决方案和时间序列数据库。 它在, , 和均可用。 只需下载VictoriaMetrics,然后查看。 如果使用Ubuntu,则只需运行snap install victoriametrics即可安装和运行它。 然后阅读和文档。 群集版本可。 在我们的查看其他文档。 如果您需要有关VictoriaMetrics的付费企业支持,请。 查看。 案例研究和讲座 按字母顺序排列的案例研究链接: 突出特点 VictoriaMetrics可用作Prometheus或的长期存储。 有关详细信息,请参阅。 Victoria
资源详情
资源评论
资源推荐
收起资源包目录
VictoriaMetrics:VictoriaMetrics:快速,经济高效的监控解决方案和时间序列数据库 (2000个子文件)
gccgo_c.c 1KB
api.go 1.29MB
zerrors_windows.go 663KB
storage-gen.go 483KB
tables13.0.0.go 379KB
tables12.0.0.go 377KB
tables11.0.0.go 376KB
tables10.0.0.go 374KB
tables9.0.0.go 372KB
tables13.0.0.go 278KB
tables12.0.0.go 273KB
tables11.0.0.go 271KB
tables10.0.0.go 267KB
defaults.go 265KB
tables9.0.0.go 263KB
exec_test.go 185KB
zstdlib.go 184KB
descriptor.pb.go 164KB
codec_gen.go 162KB
datastore_v3.pb.go 159KB
properties.go 148KB
zerrors_linux.go 141KB
zsyscall_windows.go 139KB
api.go 138KB
ztypes_linux.go 134KB
tables13.0.0.go 121KB
tables12.0.0.go 119KB
tables11.0.0.go 117KB
tables10.0.0.go 111KB
tables9.0.0.go 109KB
index_db.go 106KB
entities.go 96KB
server.go 91KB
transport.go 77KB
zerrors_openbsd_mips64.go 77KB
scannerc.go 76KB
zerrors_freebsd_arm64.go 76KB
zerrors_freebsd_386.go 75KB
zerrors_freebsd_amd64.go 75KB
zerrors_openbsd_arm64.go 74KB
zerrors_darwin_amd64.go 73KB
zerrors_darwin_arm64.go 73KB
zerrors_darwin_386.go 73KB
zerrors_darwin_arm.go 73KB
zerrors_netbsd_386.go 73KB
zerrors_openbsd_amd64.go 73KB
zerrors_netbsd_amd64.go 72KB
zerrors_netbsd_arm64.go 72KB
zerrors_netbsd_arm.go 72KB
zerrors_freebsd_arm.go 71KB
zerrors_dragonfly_amd64.go 71KB
syscall_linux.go 69KB
zerrors_openbsd_arm.go 68KB
zerrors_openbsd_386.go 68KB
head.go 67KB
zsyscall_darwin_386.go 63KB
zsyscall_darwin_amd64.go 63KB
zsyscall_darwin_arm64.go 63KB
zsyscall_darwin_arm.go 63KB
syscall_windows.go 62KB
types_windows.go 61KB
storage.go 61KB
points.go 60KB
zerrors_solaris_amd64.go 59KB
client.go 54KB
zsyscall_solaris_amd64.go 54KB
storage.go 54KB
server.go 54KB
server.go 53KB
zerrors_aix_ppc64.go 53KB
zerrors_aix_ppc.go 52KB
rollup.go 52KB
security_windows.go 52KB
partition.go 51KB
header.go 50KB
clientconn.go 50KB
index_db_test.go 49KB
zsyscall_freebsd_arm.go 48KB
zsyscall_freebsd_386.go 48KB
zsyscall_freebsd_arm64.go 48KB
zsyscall_freebsd_amd64.go 48KB
log_service.pb.go 48KB
fix.go 48KB
http2_client.go 47KB
descriptor_gen.go 47KB
zsyscall_linux.go 46KB
db.go 46KB
stream.go 46KB
protogen.go 45KB
frame.go 45KB
emitterc.go 44KB
transform.go 44KB
zsyscall_netbsd_arm.go 44KB
zsyscall_netbsd_386.go 44KB
zsyscall_netbsd_arm64.go 44KB
zsyscall_netbsd_amd64.go 44KB
binarylog.pb.go 44KB
lint.go 43KB
zsyscall_aix_ppc64_gc.go 42KB
bucket.go 42KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
易行健
- 粉丝: 29
- 资源: 4593
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Python实现的多集合卷积神经网络(MSCN)基数估计源代码+使用说明
- 1考试真题最近的t1.txt
- 管道检测31-YOLO(v5至v9)、COCO、CreateML、Darknet、Paligemma、TFRecord、VOC数据集合集.rar
- 【嘟嘟早教卡】 小程序源码分享带后台管理
- redis消息队列中间件.zip
- 基于MLP和NASA数据集实现锂电池寿命预测python源码+数据集+博客说明(高分项目)
- Bun is a JavaScript runtime
- 网页rtmp推流服务器搭建,ffmpeg最新版
- SOS-nomination-application-form.pdf
- 域名交易系统已测试可正常使用免授权带后台
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0