# Fmask
The software called Fmask (Function of mask) is used for automated **clouds**, **cloud shadows**, **snow**, and **water** masking for Landsats 4-8 and Sentinel 2 images.
If you have any questions, please contact Zhe Zhu (zhe@uconn.edu) and Shi Qiu (shi.qiu@uconn.edu) at Department of Natural Resources and the Environment, University of Connecticut.
**IMPORTANT:**
This Github page **ONLY** includes the Matlab code for Fmask 4.3. **The Matlab package with GLOBAL AUXILIARY DATA (~1G)** is available at this [Google Drive](https://drive.google.com/drive/folders/1dfQRNASMiFnE4ipFAYVwMn98eK9B9BiQ?usp=sharing), where **autoFmask** is the main function for processing an image. **autoFmaskBacth** can process all Landsats 4-8 and Sentinel-2 images into a folder. Note that Mapping Toolbox in Matlab is required for using the source code.
**For MATLAB versions later than 2020b, please delete the geotiffread.m and geotiffinfo.m in the Fmask Matlab package (standalones are not be affected)**.
**Fmask 4.3 softwares** (including standalones with Graphical User Interface (GUI) and without GUI) on Windows and Linux (~1G without MCR and ~3G with MCR) are also ready to use now! It can be downloaded at this [Google Drive](https://drive.google.com/drive/folders/1dfQRNASMiFnE4ipFAYVwMn98eK9B9BiQ?usp=sharing).
This 4.3 version has substantial better cloud, cloud shadow, and snow detection results for Sentinel 2 and better results (compared to the 3.3 version that is currently being used by USGS as the Collection 1 QA Band) for Landsats 4-8 . This one software can be used for **Landsats 4-8 Collection 1 (or Collection 2) Level 1 product (Digital Numbers)** and **Sentinel 2 Level-1C product (Top Of Atmosphere reflectance)** at the same time.
**IMPORTANT:**
Majority of the current Collection 1 Landsats 4-8 QA Band provided by USGS are derived form **3.3 Version of Fmask algorithm** based on default parameters (cloud probability is 22.5% and buffer pixel size is 3). For example, (1) The Cloud (bit 4) is based on Fmask cloud mask (0 is not cloud and 1 is cloud in Fmask); (2) The Cloud Confidence (bits 5-6) is based on Fmask cloud probability in which >22.5% is high (11), >12.5% is medium (10), and <12.5% is low (01) with 00 kept for future use; (3) Snow/ice Confidence (bits 9-10) and Cloud Shadow Confidence (bits 7-8) has only low confidence (01) and high confidence (11) which correspond to no and yes respectively in snow/ice and cloud shadow mask provided by Fmask.
**IMPORTANT:**
When making the accuracy assessment for Fmask, please dilate 3 pixels for cloud shadow, but no dilation for cloud, snow, and water.
# 4.3 Version
1) Fixed the bug when GRIDobj reads geotiff with several tiffinfos (see GRIDobj.m). (Shi Qiu 10/15/2020)
----- 4.2 version below ---- (4.2 version can be download at this [Google Drive](https://drive.google.com/drive/folders/1bVwvlGDFOsWnVj5b3MqI5yqRDoi8g935?usp=sharing))
2) Update Fmask tool for processing Landsat Collection 2 data; and allow the cloud probability thershold in a larger range such as [-100, 100] in the GUI version. (Shi Qiu 4/8/2020)
----- 4.1 version below ---- (4.1 version can be download at this [Google Drive](https://drive.google.com/open?id=1l84t_lbp5Cp5v8L_Rbzk3WQHap7MdFwc) for Matlab code and this [Google Drive](https://drive.google.com/drive/folders/1oVefP9G-TD2vhoCaaKCxQjvAnUlrwB19?usp=sharing) for standalones)
3) The cloud shadow mask over water would not be provided at default settings since this will be less meaningful to use and very time-consuming to process. At the same time, fixed the bug that the auxiliary data may not be used for some Sentinel-2 images, of which the extent in the metadata is defined in [0 360] rather than [-180 180]. (Shi Qiu 3/17/2020)
----- 4.0 version below ---- (4.0 version can be download at this [Google Drive](https://drive.google.com/open?id=1SXBnEBDJ1Kbv7IQ9qIgqloYHZfdP6O1O))
4) Fixed the bug that the cloud shadows in Sentinel-2 imagery would be projected along a wrong direction when solar azimuth angle > 180 degrees. (Shi Qiu 01/19/2019)
5) Integrated Cloud Displacement Index (CDI) into this Fmask 4.0 for better seperating clouds from bright surfaces especail for Sentinel-2. The CDI was specially designed to separate clouds from bright surfaces based on the view angle parallax of the three near infrared bands (band 7, 8 and 8a) ([Frantz et al., 2018](https://doi.org/10.1016/j.rse.2018.04.046)). (Shi Qiu and Zhe Zhu 06/03/2018)
6) Revised the method to identify the potential false positive cloud pixels. (Shi Qiu and Zhe Zhu 05/23/2018)
7) Restricted the height of the clouds located in the scene boundary into the predicted cloud height derived from its neighboring clouds. (Shi Qiu 04/05/2018)
8) Removed the overlap between the predicted cloud shadow and the potential cloud shadow layer for cloud shadow detection. (Shi Qiu and Zhe Zhu 03/29/2018)
9) Fixed the bug that the reading blue band using GRIDobj may lead to Nan value for Landsat images. (Shi Qiu 03/26/2018)
10) Improved the computational efficiency specially for cloud shadow matching procedure. (Zhe Zhu and Shi Qiu 03/24/2018)
11) Released Fmask 4.0 beta version. (Shi Qiu, Zhe Zhu, and Binbin He 03/22/2018)
Please cite the following papers:
**paper 1: Qiu S., et al., Fmask 4.0: Improved cloud and cloud shadow detection in Landsats
4-8 and Sentinel-2 imagery, Remote Sensing of Environment, (2019), [doi.org/10.1016/j.rse.2019.05.024](https://doi.org/10.1016/j.rse.2019.05.024) (paper for Fmask 4.0).**
**paper 2: Zhu, Z. and Woodcock, C. E., Improvement and Expansion of the Fmask Algorithm: Cloud, Cloud Shadow, and Snow Detection for Landsats 4-7, 8, and Sentinel 2 images, Remote Sensing of Environment (2014) [doi:10.1016/j.rse.2014.12.014](https://doi:10.1016/j.rse.2014.12.014) (paper for Fmask version 3.2).**
**paper 3: Zhu, Z. and Woodcock, C. E., Object-based cloud and cloud shadow detection in Landsat imagery, Remote Sensing of Environment (2012), [doi:10.1016/j.rse.2011.10.028](https://doi:10.1016/j.rse.2011.10.028) (paper for Fmask version 1.6).**
**paper 4: Qiu S., et al. Improving Fmask cloud and cloud shadow detection in mountainous area for Landsats 4–8 images, Remote Sensing of Environment (2017), [doi.org/10.1016/j.rse.2017.07.002](https://doi.org/10.1016/j.rse.2017.07.002) (paper for Mountainous Fmask ([MFmask](https://github.com/qsly09/MFmask)), that has been integrated into this Fmask 4.0).**
**paper 5: Qiu, S., et al., Making Landsat Time Series Consistent: Evaluating and Improving Landsat Analysis Ready Data, Remote Sensing (2019), [doi.org/10.3390/rs11010051](https://doi.org/10.3390/rs11010051) (First paper introducing Fmask 4.0 for improving LTS consistency).**
**The training data** for the Fmask 4.0 are availble at the following link: https://landsat.usgs.gov/landsat-8-cloud-cover-assessment-validation-data
**The validation data** for the Fmask 4.0 are comming soon.
After running Fmask 4.0, there will be an image called XXXFmask.tif. The image values are presenting the following classes:
0 => clear land pixel
1 => clear water pixel
2 => cloud shadow
3 => snow
4 => cloud
255 => no observation
# 3.3 Version
Updates (since 3.2):
1) Bug fixed in cloud and cloud shadow matching algorithm.
2) Bug fixed in building 3D cloud objects for small clouds (radium <= 3) for versions where TIRS band is used.
The 3.3 version of **Matlab code** for **Landsats 4-8 in which Landsat 8 has valid TIRS band** can be downloaded at this [link] (https://www.dropbox.com/sh/riruwk721zbl0he/AAAe_ccQiNS7_wHNC3HadOqRa?dl=0)
The 3.3 version of **Windows stand alone software** for **Landsats 4-8 in which Landsat 8 has valid TIRS band** can be downloaded at this [link] (https://www.dropbox.com/sh/ylzub1uzosqidwy/AAC3zmk4M3DSbSoS2OLhR5r9a?dl=0) (provided by Sean Griffin segriffin@gmail.com)
The 3.3 version of **Matlab code** for **Landsats 4-8 in which Landsat 8 does not have valid TIRS band** (zeor v
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
面膜 名为Fmask(蒙版功能)的软件用于Landsats 4-8和Sentinel 2图像的自动云,云阴影,雪和水蒙版。 如有任何疑问,请联系康涅狄格大学自然资源与环境系的朱哲( )和史秋( )。 重要的: 这个Github页面仅包含Fmask 4.3的Matlab代码。 此提供了带有GLOBAL AUXILIARY DATA( 〜1G )的Matlab软件包,其中autoFmask是处理图像的主要功能。 autoFmaskBacth可以将所有Landsats 4-8和Sentinel-2图像处理到一个文件夹中。 请注意,使用源代码需要Matlab中的Mapping Toolbox。 对于2020b之后的MATLAB版本,请删除Fmask Matlab软件包中的geotiffread.m和geotiffinfo.m(独立版本不受影响) 。 Windows和Linux上的Fma
资源详情
资源评论
资源推荐
收起资源包目录
fmask-master.zip (62个子文件)
Fmask-master
DetectPotentialCloud.m 6KB
lndhdrread.m 19KB
ReadMetadataMSI.m 5KB
LoadSensorType.m 2KB
pixel2pixv.m 2KB
getcoordinates.m 729B
ErodeCommissons.m 3KB
DetectSnow.m 437B
ReadS2InspireXML.m 1KB
ObjMeta.m 426B
geoimread.m 14KB
problTemperature.m 797B
GRIDobj.m 17KB
probwBrightness.m 320B
ReadSunViewGeometryMSI.m 12KB
autoFmaskBatch.m 473B
geotiffinfo.m 97KB
CheckImagesPath.m 8KB
GRIDobj2geotiff.m 4KB
reproject2utm.m 6KB
BufferMasks.m 2KB
stratiedSampleHanlder.m 6KB
DetectAbsSnow.m 3KB
FmaskParameters.m 2KB
MatchCloudShadow.m 28KB
LoadData.m 5KB
autoFmask.m 10KB
DetectWater.m 3KB
LoadAuxiData.m 19KB
getSensorViewGeo.m 680B
NormalizaCirrusDEM.m 2KB
xml2struct.m 7KB
NDBI.m 800B
imcircle.m 2KB
DetectPotentialPixels.m 2KB
getRealCloudPositionS2.m 827B
LICENSE 1KB
nd2toarbt_msi.m 9KB
ProjectDEM2Plane.m 4KB
arcslope.m 2KB
aspect.m 2KB
README.md 18KB
NDVI.m 773B
Readopentopo.m 4KB
probThin.m 176B
problBrightness.m 637B
ObjTOABT.m 3KB
DetectPotentialFalsePositivePixels.m 3KB
Saturate.m 278B
nd2toarbt.m 18KB
DetectPotentialCloudShadow.m 5KB
inpaint_nans.m 16KB
refmat2XY.m 479B
probwTemperature.m 438B
NDSI.m 1KB
NormalizeBT.m 4KB
CDI.m 1KB
getRealCloudPosition.m 660B
findMatdetecFootprint.m 5KB
EnhanceLine.m 3KB
ObservMask.m 1KB
problSpectralVaribility.m 372B
共 62 条
- 1
Demeyi-邓子
- 粉丝: 23
- 资源: 4533
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论0