馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Disabling wandb](#disabling-wandb)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
* training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
* To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
收起资源包目录
毕业设计:本科毕业设计-基于YOLOv5的异常行为检测.zip (223个子文件)
setup.cfg 1KB
config 267B
Dockerfile 2KB
Dockerfile 821B
.dockerignore 4KB
FETCH_HEAD 132B
.gitattributes 75B
.gitignore 4KB
HEAD 130B
HEAD 21B
pack-0ec88e4f2afb54aec23e8b596d904a7ab24c894c.idx 8KB
index 20KB
tutorial.ipynb 55KB
bus.jpg 476KB
mosaic_with_label.jpg 298KB
mosaic_without_label.jpg 280KB
zidane.jpg 165KB
mixup_origin.jpg 145KB
scale.jpg 134KB
flipud.jpg 105KB
rotation.jpg 95KB
shear.jpg 91KB
fliplr.jpg 91KB
hsv.jpg 90KB
mixup.jpg 80KB
perspective.jpg 66KB
cutout.jpg 49KB
3.jpg 48KB
cutmix.jpg 46KB
translation.jpg 38KB
4.jpg 30KB
1.jpg 26KB
2.jpg 23KB
LICENSE 34KB
main 144B
main 130B
main 41B
main 41B
OFFICAL_README.md 15KB
README.md 11KB
CONTRIBUTING.md 5KB
README.md 2KB
README.md 659B
pack-0ec88e4f2afb54aec23e8b596d904a7ab24c894c.pack 2.75MB
改进算法整体框架.png 163KB
common.py 49KB
datasets.py 45KB
train.py 40KB
general.py 37KB
export.py 27KB
wandb_utils.py 27KB
plots.py 22KB
tf.py 20KB
val.py 19KB
metrics.py 18KB
yolo.py 17KB
loss.py 16KB
torch_utils.py 16KB
detect.py 15KB
data_augment_test.py 14KB
augmentations.py 11KB
autoanchor.py 10KB
train_test.py 8KB
__init__.py 7KB
hubconf.py 6KB
downloads.py 6KB
xml2txt.py 6KB
experimental.py 5KB
activations.py 4KB
benchmarks.py 4KB
callbacks.py 2KB
autobatch.py 2KB
focus_vs_conv.py 2KB
model_test.py 2KB
spp_vs_sppf.py 1KB
resume.py 1KB
sweep.py 1KB
__init__.py 1KB
restapi.py 1KB
log_dataset.py 1KB
maketxt.py 915B
activation_test.py 421B
gpu_memory.py 409B
example_request.py 299B
param_metric_test.py 299B
demo_test.py 216B
demo.py 55B
__init__.py 0B
__init__.py 0B
__init__.py 0B
datasets.cpython-38.pyc 35KB
general.cpython-38.pyc 31KB
wandb_utils.cpython-38.pyc 19KB
plots.cpython-38.pyc 18KB
torch_utils.cpython-38.pyc 13KB
metrics.cpython-38.pyc 12KB
augmentations.cpython-38.pyc 9KB
__init__.cpython-38.pyc 7KB
autoanchor.cpython-38.pyc 7KB
loss.cpython-38.pyc 6KB
共 223 条
- 1
- 2
- 3
资源评论
九转成圣
- 粉丝: 5741
- 资源: 2960
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 薯条-数据库 1111111111111111
- win32汇编环境,在对话框中画五边形与六边形
- 思维导图制作-会计初级知识重难点-会计务实-概述
- 安国量产工具集合 支持U2 U3
- 思维导图制作-会计初级知识重难点-会计务实-会计基础
- 思维导图制作-会计初级知识重难点-会计务实-流动资产
- 思维导图制作-会计初级知识重难点-会计务实-非流动资产
- Python的Numpy库常见操作用法
- 思维导图制作-会计初级知识重难点-会计务实-所有者权益
- 西门子1200和1500 模拟量PID闭环控制程序模拟仿丨真案例 为PID函数仿丨真,只需要有一个PLC即可学习PID的应用方法, 不需要额外的变送器,温度检测,加热器等硬件设备即可模拟仿真轻松学习P
- 思维导图制作-会计初级知识重难点-会计务实-收入、费用和利润
- 基于阻抗的单向并网逆变器前馈控制策略研究,在电压畸变时验证,电网电压全前馈谐波抑制有效性 电流环采用QPR控制 图一整体电路与控制及工况给定图 图二不加电网电压全前馈控制图 图三不加电网电压全前馈电压
- 思维导图制作-会计初级知识重难点-会计务实-成本核算
- 思维导图制作-会计初级知识重难点-会计务实-政府会计基础
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功