没有合适的资源?快使用搜索试试~ 我知道了~
卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核
资源推荐
资源详情
资源评论
pytorch-卷积神经网络基础卷积神经网络基础
卷积神经网络基础卷积神经网络基础
本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。
二维卷积层二维卷积层
本节介绍的是最常见的二维卷积层,常用于处理图像数据。
二维互相关运算二维互相关运算
二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其
中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷
积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影
部分分别是输入的第一个计算区域、核数组以及对应的输出。
图1 二维互相关运算
下面我们用corr2d函数实现二维互相关运算,它接受输入数组X与核数组K,并输出数组Y。
import torch
import torch.nn as nn
def corr2d(X, K):
# 这里的corr2d是二维互运算
# x是二维数组,也就是需要卷积的数组
# k是卷积和
H, W = X.shape
h, w = K.shape
Y = torch.zeros(H - h + 1, W - w + 1)
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
return Y
构造上图中的输入数组X、核数组K来验证二维互相关运算的输出。
X = torch.tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
K = torch.tensor([[0, 1], [2, 3]])
Y = corr2d(X, K)
print(Y)
# 符合计算结果
tensor([[19., 25.],
[37., 43.]])
二维卷积层二维卷积层
二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。
class Conv2D(nn.Module):# 默认继承
def __init__(self, kernel_size):
super(Conv2D, self).__init__()
self.weight = nn.Parameter(torch.randn(kernel_size))# 卷积核
self.bias = nn.Parameter(torch.randn(1))
# print(self.bias)给每个维度都加上偏执
def forward(self, x):
# print(corr2d(x, self.weight),1)
# print(corr2d(x, self.weight) + self.bias,2)
return corr2d(x, self.weight) + self.bias# 卷积之后加上偏执
下面我们看一个例子,我们构造一张6×86 imes 86×8的图像,中间4列为黑(0),其余为白(1),希望检测到颜色边缘。
我们的标签是一个6×76 imes 76×7的二维数组,第2列是1(从1到0的边缘),第6列是-1(从0到1的边缘)。
X = torch.ones(6, 8)
资源评论
weixin_38750406
- 粉丝: 6
- 资源: 894
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功