针对人脸识别中遮挡区域降低检测准确度的问题,提出一种基于生成对抗网络的遮挡人脸修复方法。该方法以生成对抗网络作为基本架构,结合Wasserstein距离和添加梯度惩罚损失函数来训练网络模型,以全局上下文损失和先验损失相结合的方式来约束网络生成无遮挡人脸图片,并利用泊松融合完成遮挡区域的修复。在CelebA数据集的实验结果表明,所提方法较其他文献模型训练更稳定,PSNR平均值提高了5%,SSIM平均值提高了8%。
评论星级较低,若资源使用遇到问题可联系上传者,3个工作日内问题未解决可申请退款~