对点目标的图像变化检测,现有的变化检测技术结果往往存在着虚警过大的问题。通过深入分析多个传统的变化检测方法的特点,利用各方法的互补性,提出了利用Laplacian Eigenmap对多个方法检测结果进行降维分类的优化技术。首先把各个方法对某个像素的检测结果用向量的形式进行表示,然后利用Laplacian Eigenmap对整个图像的数据流形在低维空间展开,最后利用模糊分类进行分类。该技术有两个优势:(1)在保证现有较高检测率的同时,大大降低了结果的虚警率;(2)它极大地降低了在传统方法中由于人为阈值取舍带来的偏差风险。但该技术的不足之处是增加了计算量。