嵌入式系统嵌入式系统/ARM技术中的半导体温差模块在热缺陷监测中的技术中的半导体温差模块在热缺陷监测中的
应用与实现应用与实现
运行中的电力设备发热是安全运行的潜在威胁。通过对比分析发现,在变电设备的实际运行中,运行方式的改
变、负荷变化较大、高温天气时,相关电气设备大电流的回路连接点、闸刀触头比较容易产生发热等异常情
况。半导体温差发电器是基于塞贝克效应的一种可以将热能直接转换成电能的装置。半导体温差发电器作为一
种特殊的能量转化方式,有其独特的优点,特别适合用于对低温差能量的回收利用。 本文对半导体温差发电器
的工作过程进行了火用分析,提出了用火用效率作为低温差下半导体温差发器工作性能的评价参数。并对半导
体温差发电模块的工作性能进行了分析,主要考虑了电偶臂的几何尺寸、接触效应和汤姆逊效应对其工作性能
的影响。由于接触效应的影
运行中的电力设备发热是安全运行的潜在威胁。通过对比分析发现,在变电设备的实际运行中,运行方式的改变、负荷变
化较大、高温天气时,相关电气设备大电流的回路连接点、闸刀触头比较容易产生发热等异常情况。半导体温差发电器是基于
塞贝克效应的一种可以将热能直接转换成电能的装置。半导体温差发电器作为一种特殊的能量转化方式,有其独特的优点,特
别适合用于对低温差能量的回收利用。 本文对半导体温差发电器的工作过程进行了火用分析,提出了用火用效率作为低温差
下半导体温差发器工作性能的评价参数。并对半导体温差发电模块的工作性能进行了分析,主要考虑了电偶臂的几何尺寸、接
触效应和汤姆逊效应对其工作性能的影响。由于接触效应的影响,温差发电器的工作效率将随温差电偶臂长度的减小而降低,
而且接触效应影响越显着,工作效率降低的就越迅速。汤姆逊效应对输出功率有所影响,但并不影响取得最大输出功率时,负
载电阻的匹配条件,降低冷端温度有利于减小汤姆逊效应对最大输出功率的影响。这样可以解决目前面临的问题。电气设备外
部热缺陷的诊断可参照表1。
在无现场供电和不使用电池的情况下,利用半导体温差发电技术在高压、高温环境下为测温和控制电路提供电能,当发热
温差大于10 K时即自动启动测温电路,否则断电等待。利用低功耗单片机测温电路结合间歇式工作方式进行数据采集与处
理,理想地实现了高压测温一次设备和二次监测设备的电隔离。
1 测温方案及原理测温方案及原理
如图1所示,基于AVR低功耗单片机的测温装置由三部分组成:直流发电电路、稳压电路和低功耗单片机测温报警电路。
半导体温差发电模块的冷、热面一旦有了温度差,温差发电模块两端就产生电压差。由于温度差很难固定,为此 ,首先须对
电压进行升压、稳压处理,然后用稳定的电压给单片机测温电路提供电能。如果给一片40 mm×40 mm、126对PN结的半导体
发电模块提供15 K的温差,就能产生约0.6 V(大于0.5 V的超低压充电泵的开启电压)的开路电压,通过超低压充电泵启动
DC-DC控制器工作,从而提供3.3 V、200 mA的输出为后续测温电路供电。
2 发电电路发电电路
半导体温差发电模块主要利用其冷面和热面之间的温差来产生电,因此如何获得热源以及如何降低冷面的温度至关重要。
根据实际测温要求,选择电气设备发热部件直接作为发电模块热面的加热源,冷面加装散热片和一个风扇,驱动风扇的电能也
是由半导体温差模块产生,其发电装置如图2所示。为了把发热体的热量尽可能高效地传给半导体温差发电模块,把安装片的
一端面直接与发热体接触,另一面紧贴半导体温差发电模块3的热面。同时在安装片4和半导体温差模块的热面(B面)之间涂
上很薄的一层硅胶,可以把接触面的空气排走,让模块表面与安装片充分接触。半导体温差模块的冷面(A面)和散热片2之
间也涂有硅胶,并且在散热片上加一个额定工作电压为1.5 V的风扇。风扇的启/停由单片机控制,这样可以将冷面温度控制在
333 K以内。
评论0
最新资源