嵌入式系统嵌入式系统/ARM技术中的基于技术中的基于Nios II的数字音频录放系统的的数字音频录放系统的
设计设计
前言 SOPC( System On Programmable Chip)技术是SOC( System On Chip)技术和电子设计自动化
(EDA)技术结合的产物。它可以将处理器、存储器、I/O接口、硬件协处理器和普通的用户逻辑等系统设计需
要的功能模块都集成到一个FPGA 芯片里, 构建一个可编程的片上系统[1]。它还具有灵活的设计方式,可裁减、
可扩充、可升级,具备系统可编程等功能,是一种优秀的嵌入式系统设计技术[2]。本文研究了一种基于SOPC
技术的嵌入式数字音频录放系统的设计方案。系统通过在FPGA芯片上配置NiosII软核处理器和相关的接口模块
来实现嵌入式系统的主要硬件结构,并结
前言
SOPC( System On Programmable Chip)技术是SOC( System On Chip)技术和电子设计自动化(EDA)技术结合的产
物。它可以将处理器、存储器、I/O接口、硬件协处理器和普通的用户逻辑等系统设计需要的功能模块都集成到一个FPGA 芯
片里, 构建一个可编程的片上系统[1]。它还具有灵活的设计方式,可裁减、可扩充、可升级,具备系统可编程等功能,是一种
优秀的嵌入式系统设计技术[2]。本文研究了一种基于SOPC技术的嵌入式数字音频录放系统的设计方案。系统通过在FPGA芯
片上配置NiosII软核处理器和相关的接口模块来实现嵌入式系统的主要硬件结构,并结合嵌入式系统所支持的软件设计来控制音
频编/解码芯片WM8731和SDRAM,实现了音频信号的A/D、D/A转换、存储、回放等功能。由于采用了SOPC和DMA控制技
术,该系统具有设计灵活、扩展性好和数据处理速度快等优点[3、4]。
1 系统原理和结构
系统结构如图1所示。本系统选用的FPGA芯片是Altera公司最新推出的CycloneII 系列的EP2C35。该芯片具有35000个逻
辑单元、672个引脚、475个用户自定义I/O接口、35个嵌入式乘法器和4个锁相环,是一个集成度极高和功能强大的FPGA芯
片。在FPGA中设计有NiosII软核处理器和挂在该NiosII系统的Avalon总线上的I2C配置接口模块、串/并转换模块(S/P)、并/串
转换模块(P/S)、先入先出存储器模块(fifo_in、fifo_out)、Sdram存储器控制接口(Sdram control)、DMA控制器接口
(Dma_in、Dma_out)和用于接收按键信息的通用并行接口(pio)模块等。在FPGA外有音频编/解码芯片(WM8731)、音
频数据存储模块(SDRAM)和控制按键(keybord)等。
图1 系统结构图
系统的音频信号采集原理是:WM8731经过I2C配置后,将输入端加入的模拟音频信号进行A/D转换后,成为串行的数字
信号。FPGA内的串/并转换模块再将该信号转换成16位宽的并行数字信号。此信号从s/p的输出,并交给先入先出存储器
(fifo)进行缓存。当fifo的数据达到其容量的一半时向dma_in请求一次DMA传送。Dma_in接受请求后就执行一次fifo到Sdram
之间的直接DMA数据保存。多次重复fifo到Sdram之间的DMA传送,直到采集停止键被按下后,就完成了一段音频数据的采
集。
回放原理是:在Dma_out的控制下,通过Sdram控制器将Sdram中保存的音频数据经fifo_out送到并/串转换模块的输入
端,经过并/串转换后的串行数字信号再由WM8731进行数/模转换,就还原成为模拟的声音信号。多次重复这种DMA传送操
作,直到回放停止键被按下后就完成了一段音频数据的回放。
2 系统硬件设计
系统的硬件主要由FPGA内的NIOSII中央处理器及接口模块和FPGA外的音频编/解码芯片WM8731、存储器和控制键等部
分构成。
在系统的硬件设计中,FPGA内部各模块的设计是本系统硬件设计的核心技术。FPGA内部各模块是利用Altera公司提供
的QuartusII开发软件和其中集成的SOPC Builder系统开发工具来设计的。SOPC Builder支持NiosII CPU的配置,并支持设计
者在该工具所提供的IP库中根据系统设计需要选择相应的接口模块,并加入到NiosII系统中。这样,在极短的时间内就可以完
评论0
最新资源