没有合适的资源?快使用搜索试试~ 我知道了~
Normality and Quasinormality Criteria of Zero-free Meromorphic F...
0 下载量 112 浏览量
2020-02-21
22:52:16
上传
评论
收藏 161KB PDF 举报
温馨提示
无零点亚纯函数族的正规与拟正规定则,程春暖,徐焱,设$k,K$为正整数,$arphi(z)( otequiv0)$为解析函数,$mathcal{F}$为在区域$D$内没有零点的亚纯函数族, 每个函数极点均为重级. 如果对任意的$finmathc
资源推荐
资源详情
资源评论
˖ڍመڙጲ
http://www.paper.edu.cn
无零点亚纯函数族的正规与拟正规定则
程春暖,徐焱
南京师范大学数学科学学院,南京 210023
摘要:设 k, K 为正整数,φ(z)(≡ 0) 为解析函数,F 为在区域 D 内没有零点的亚纯函数族,
每个函数极点均为重级. 如果对任意的 f ∈ F,f
(k)
(z) − φ(z) 至多有 K 个不同零点, 则 F 在
D 内为至多 ν 阶的拟正规族,这里 ν = [
K
k+2
] 为不超过
K
k+2
的最大整数. 特别地,若
K = k + 1,则 F 在 D 内正规.
关键词:亚纯函数,正规族,拟正规族
中图分类号: O174.52
Normality and Quasinormality Criteria of
Zero-free Meromorphic Functions
Cheng Chunnuan, Xu Yan
School of Mathematics, Nanjing Normal University, Nanjing 210023
Abstract: Let k, K be positive integers, φ(z)(≡ 0) be an analytic function, and F be a
family of zero-free meromorphic functions on a domain D, all of whose poles are multiple. If
for each f ∈ F, f
(k)
(z) − φ(z) has at most K distinct zeros(ignoring multiplicity), then F is
quasinormal of order at most ν on D, where ν = [
K
k+2
] is equal to the largest integer not
exceeding
K
k+2
. In particular, if K = k + 1, then F is normal on D.
Key words: meromorphic function, normal family, quasinormal family.
0 Introduction
Let D be a domain in the complex plane C, and F be a family of meromorphic functions
defined on D. F is said to be normal (quasinormal of order ν) on D, in the sense of Montel, if for
any sequence {f
n
} ⊂ F there exists a subsequence {f
n
j
}, such that {f
n
j
} converges spherically
locally uniformly on D (minus a set containing at most ν points), to a meromorphic function
or ∞. The subtracted set may depend on the subsequence. Clearly, the family is quasinormal
of order 0 on D if and only if it is normal on D. See [1, 2, 3, 4].
In 1959, Hayman[5] proved that if f is meromorphic in C and if f = 0 and f
(k)
= 1 for a
positive integer k, then f is constant. The corresponding normality criterion is due to Gu[6],
Foundations: Research supported by NSFC(Grant Nos.11171045, 11471163) and SRFDP(Grant No.20123207110003).
Author Introduction: Cheng Chunnuan(1985-),female,Ph.D student,major research direction:complex analysis.
Correspondence author:Xu Yan(1964-),male,professor,major research direction:complex analysis.
- 1 -
˖ڍመڙጲ
http://www.paper.edu.cn
as follows.
Theorem A. Let k be a positive integer and F be a family of zero-free meromorphic functions
on a domain D. If for each f ∈ F, f
(k)
= 1 on D, then F is normal on D.
Up to now, this result has undergone various extensions. Yang[7] and Schwick[8] proved
Theorem B. Let k be a positive integer, h(z)(≡ 0) be an analytic function on a domain D,
and F be a family of zero-free meromorphic functions on D. If, for each f ∈ F, f
(k)
(z) = h(z)
on D , then F is normal on D.
Chang[9] generalized Theorem A by allowing f
(k)
− 1 to have zeros but restricting their
numbers.
Theorem C. Let k be a positive integer and F be a family of zero-free meromorphic functions
on a domain D. If for each f ∈ F, f
(k)
− 1 has at most k distinct zeros(ignoring multiplicity)
on D , then F is normal on D.
Theorem D. Let k be a positive integer and F be a family of zero-free meromorphic functions
on a domain D such that for each f ∈ F, f
(k)
− 1 has at most k + 1 distinct zeros(ignoring
multiplicity). Suppose additionally that there exists a number 0 < ε ≤ 1 such that for every
k + 1 distinct simple zeros z
1
, ...z
k+1
of f
(k)
= 1 for each f ∈ F,
k+1
∑
i=1
(
z
i
−
1
k + 1
k+1
∑
j=1
z
j
)
k+2
≥
k+1
∑
i=1
z
i
−
1
k + 1
k+1
∑
j=1
z
j
k+2
.
Then F is normal on D.
Theorem E. Let k, K be positive integers, and F be a family of zero-free meromorphic func-
tions on a domain D. If for each f ∈ F, f
(k)
(z) − 1 has at most K distinct zeros(ignoring
multiplicity), then F is quasinormal of order at most ν on D, where ν = [
K
k+1
] is equal to the
largest integer not exceeding
K
k+1
.
A natural problem arise: what can we say if we replace the constant 1 in Theorems C-E
by an analytic function φ(z)(≡ 0)? Deng-Fang-Liu [10] proved
Theorem F. Let k be a positive integer, φ(z)(≡ 0) be an analytic function on a domain D ,
and F be a family of zeros-free meromorphic functions on D. If, for each f ∈ F, f
(k)
(z) − φ(z)
- 2 -
剩余12页未读,继续阅读
资源评论
weixin_38734037
- 粉丝: 5
- 资源: 902
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功