没有合适的资源?快使用搜索试试~ 我知道了~
HadoopMap/Reduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群上,并以一种可靠容错的方式并行处理上T级别的数据集。一个Map/Reduce作业(job)通常会把输入的数据集切分为若干独立的数据块,由 map任务(task)以完全并行的方式处理它们。框架会对map的输出先进行排序,然后把结果输入给reduce任务。通常作业的输入和输出都会被存储在文件系统中。整个框架负责任务的调度和监控,以及重新执行已经失败的任务。通常,Map/Reduce框架和分布式文件系统是运行在一组相同的节点上的,也就是说,计算节点和存储节点通常在一起。这
资源推荐
资源详情
资源评论
MapReduce实例浅析实例浅析
1.MapReduce概述
Hadoop Map/Reduce是一个使用简易的软件框架,基于它写出来的应用程序能够运行在由上千个商用机器组成的大型集群
上,并以一种可靠容错的方式并行处理上T级别的数据集。
一个Map/Reduce 作业(job) 通常会把输入的数据集切分为若干独立的数据块,由 map任务(task)以完全并行的方式处理
它们。框架会对map的输出先进行排序, 然后把结果输入给reduce任务。通常作业的输入和输出都会被存储在文件系统中。
整个框架负责任务的调度和监控,以及重新执行已经失败的任务。
通常,Map/Reduce框架和分布式文件系统是运行在一组相同的节点上的,也就是说,计算节点和存储节点通常在一起。这种
配置允许框架在那些已经存好数据的节点上高效地调度任务,这可以使整个集群的网络带宽被非常高效地利用。
Map/Reduce框架由一个单独的master JobTracker 和每个集群节点一个slave TaskTracker共同组成。master负责调度构成一
个作业的所有任务,这些任务分布在不同的slave上,master监控它们的执行,重新执行已经失败的任务。而slave仅负责执行
由master指派的任务。
应用程序至少应该指明输入/输出的位置(路径),并通过实现合适的接口或抽象类提供map和reduce函数。再加上其他作业
的参数,就构成了作业配置(job configuration)。然后,Hadoop的 job client提交作业(jar包/可执行程序等)和配置信息给
JobTracker,后者负责分发这些软件和配置信息给slave、调度任务并监控它们的执行,同时提供状态和诊断信息给job-
client。
虽然Hadoop框架是用Java实现的,但Map/Reduce应用程序则不一定要用 Java来写 。
2.样例分析:单词计数
1、WordCount源码分析
单词计数是最简单也是最能体现MapReduce思想的程序之一,该程序完整的代码可以在Hadoop安装包的src/examples目录下
找到
单词计数主要完成的功能是:统计一系列文本文件中每个单词出现的次数,如图所示:
(1)Map过程
Map过程需要继承org.apache.hadoop.mapreduce包中的Mapper类,并重写map方法
通过在map方法中添加两句把key值和value值输出到控制台的代码,可以发现map方法中的value值存储的是文本文件中的一
行(以回车符作为行结束标记),而key值为该行的首字符相对于文本文件的首地址的偏移量。然后StringTokenizer类将每一
行拆分成一个个的单词,并将<word,1>作为map方法的结果输出,其余的工作都交由MapReduce框架处理。其中IntWritable
和Text类是Hadoop对int和string类的封装,这些类能够被串行化,以方便在分布式环境中进行数据交换。
TokenizerMapper的实现代码如下:
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
System.out.println("key = " + key.toString());//添加查看key值
System.out.println("value = " + value.toString());//添加查看value值
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
(2)Reduce过程
Reduce过程需要继承org.apache.hadoop.mapreduce包中的Reducer类,并重写reduce方法
reduce方法的输入参数key为单个单词,而values是由各Mapper上对应单词的计数值所组成的列表,所以只要遍历values并求
和,即可得到某个单词的出现总次数
IntSumReduce类的实现代码如下:
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
(3)执行MapReduce任务
在MapReduce中,由Job对象负责管理和运行一个计算任务,并通过Job的一些方法对任务的参数进行相关的设置。此处设置
了使用TokenizerMapper完成Map过程和使用的IntSumReduce完成Combine和Reduce过程。还设置了Map过程和Reduce过
程的输出类型:key的类型为Text,value的类型为IntWritable。任务的输入和输出路径则由命令行参数指定,并由
FileInputFormat和FileOutputFormat分别设定。完成相应任务的参数设定后,即可调用job.waitForCompletion()方法执行任
务,主函数实现如下:
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount ");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(wordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
运行结果如下:
14/12/17 05:53:26 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
14/12/17 05:53:26 INFO input.FileInputFormat: Total input paths to process : 2
14/12/17 05:53:26 INFO mapred.JobClient: Running job: job_local_0001
剩余7页未读,继续阅读
资源评论
weixin_38713717
- 粉丝: 6
- 资源: 932
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 动手学深度学习,沐神版配套代码,所有代码均可在jupyter中运行,内附有极为详尽的代码注释
- qaxbrowser-1.1.32574.52.exe (奇安信浏览器windows安装包)
- C#编写modbus tcp客户端读取modbus tcp服务器数据
- 某房地产瑞六补环境部分代码
- 基于Matlab实现无刷直流电机仿真(模型+说明文档).rar
- AllSort(直接插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序)
- 模拟qsort,改造冒泡排序使其能排序任意数据类型,即日常练习
- carsim+simulink联合仿真实现变道 包含路径规划算法+mpc轨迹跟踪算法 可选simulink版本和c++版本算法 可以适用于弯道道路,弯道车道保持,弯道变道 carsim内规划轨迹可视化
- 数组经典习题之顺序排序和二分查找和冒泡排序
- 永磁同步电机神经网络自抗扰控制,附带编程涉及到的公式文档,方便理解,模型顺利运行,效果好,位置电流双闭环采用二阶自抗扰控制,永磁同步电机三闭环控制,神经网络控制,自抗扰中状态扩张观测器与神经网络结合
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功