基于基于Python的图像数据增强的图像数据增强Data Augmentation解析解析
主要介绍了基于Python的图像数据增强Data Augmentation解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
1.1 简介简介
深层神经网络一般都需要大量的训练数据才能获得比较理想的结果。在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合。
在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise)
笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Estimatiion and Tracking in videos)的项目。因此本文的数据增强仅使用——翻转(Flip),旋转(Rotate ),缩放以及缩放
(Scale)
2.1 裁剪(裁剪(Crop))
image.shape--([3, width, height])一个视频序列中的一帧图片,裁剪前大小不统一
bbox.shape--([4,])人体检测框,用于裁剪
x.shape--([1,13]) 人体13个关键点的所有x坐标值
y.shape--([1,13])人体13个关键点的所有y坐标值
def crop(image, bbox, x, y, length):
x, y, bbox = x.astype(np.int), y.astype(np.int), bbox.astype(np.int)
x_min, y_min, x_max, y_max = bbox
w, h = x_max - x_min, y_max - y_min
# Crop image to bbox
image = image[y_min:y_min + h, x_min:x_min + w, :]
# Crop joints and bbox
x -= x_min
y -= y_min
bbox = np.array([0, 0, x_max - x_min, y_max - y_min])
# Scale to desired size
side_length = max(w, h)
f_xy = float(length) / float(side_length)
image, bbox, x, y = Transformer.scale(image, bbox, x, y, f_xy)
# Pad
new_w, new_h = image.shape[1], image.shape[0]
cropped = np.zeros((length, length, image.shape[2]))
dx = length - new_w
dy = length - new_h
x_min, y_min = int(dx / 2.), int(dy / 2.)
x_max, y_max = x_min + new_w, y_min + new_h
cropped[y_min:y_max, x_min:x_max, :] = image
x += x_min
y += y_min
x = np.clip(x, x_min, x_max)
y = np.clip(y, y_min, y_max)
bbox += np.array([x_min, y_min, x_min, y_min])
return cropped, bbox, x.astype(np.int), y.astype(np.int)
2.2 缩放(缩放(Scale))
image.shape--([3, 256, 256])一个视频序列中的一帧图片,裁剪后输入网络为256*256
bbox.shape--([4,])人体检测框,用于裁剪
x.shape--([1,13]) 人体13个关键点的所有x坐标值
y.shape--([1,13])人体13个关键点的所有y坐标值
f_xy--缩放倍数
def scale(image, bbox, x, y, f_xy):
(h, w, _) = image.shape
h, w = int(h * f_xy), int(w * f_xy)
image = resize(image, (h, w), preserve_range=True, anti_aliasing=True, mode='constant').astype(np.uint8)
x = x * f_xy
y = y * f_xy
bbox = bbox * f_xy
x = np.clip(x, 0, w)
y = np.clip(y, 0, h)
return image, bbox, x, y
2.3 翻转(翻转(fillip))
这里是将图片围绕对称轴进行左右翻转(因为人体是左右对称的,在关键点检测中有助于防止模型过拟合)
def flip(image, bbox, x, y):
image = np.fliplr(image).copy()
w = image.shape[1]
x_min, y_min, x_max, y_max = bbox
bbox = np.array([w - x_max, y_min, w - x_min, y_max])
x = w - x
x, y = Transformer.swap_joints(x, y)
return image, bbox, x, y
翻转前:
翻转后:
评论0
最新资源