没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
在本文中,我们构造了轴向矢量-双夸克-轴向矢量-双夸克-反夸克类型和轴向矢量-双夸克-标量-双夸克-反夸克类型的内插电流,然后计算了在操作员产品扩展中直至10维的真空冷凝物的贡献。 ,我们用QCD和规则系统地研究了JP = 12±隐魅五夸克态的质量和极残差。 在计算中,我们使用公式μ= MP2-(2Mc)2确定QCD光谱密度的能级。 我们考虑了轻夸克的SU(3)破坏效应,并获得了具有奇数S = 0,-1,-2,-3的隐藏魅族五夸克态的质量,这可以与 未来的实验数据。
资源推荐
资源详情
资源评论
Eur. Phys. J. C (2016) 76:142
DOI 10.1140/epjc/s10052-016-3983-2
Regular Article - Theoretical Physics
Analysis of the
1
2
±
pentaquark states in the
diquark–diquark–antiquark model with QCD sum rules
Zhi-Gang Wang
a
Department of Physics, North China Electric Power University, Baoding 071003, People’s Republic of China
Received: 25 December 2015 / Accepted: 25 February 2016 / Published online: 14 March 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com
Abstract In this article, we construct both the axial
vector-diquark–axialvector-diquark–antiquark type and the
axialvector-diquark–scalar-diquark–antiquark type interpo-
lating currents, then calculate the contributions of the vac-
uum condensates up to dimension 10 in the operator prod-
uct expansion, and we study the masses and pole residues
of the J
P
=
1
2
±
hidden-charm pentaquark states with the
QCD sum rules in a systematic way. In calculations, we use
the formula μ =
M
2
P
− (2M
c
)
2
to determine the energy
scales of the QCD spectral densities. We take into account
the SU(3) breaking effects of the light quarks, and we obtain
the masses of the hidden-charm pentaquark states with the
strangeness S = 0, −1, −2, −3, which can be confronted
with the experimental data in the future.
1 Introduction
Recently, the LHCb collaboration studied the
0
b
→
J/ψ K
−
p decays, and one observed two pentaquark can-
didates P
c
(4380) and P
c
(4450) in the J/ψ p mass spectrum
with the significances of more than 9 σ [1]. The measured
masses and widths are M
P
c
(4380)
= 4380 ± 8 ± 29 MeV,
M
P
c
(4450)
= 4449.8 ± 1.7 ± 2.5MeV,
P
c
(4380)
= 205 ±
18±86 MeV, and
P
c
(4450)
= 39±5±19 MeV, respectively.
The decays P
c
(4380) → J/ψ p take place through the rel-
ative S-wave channel, while the decays P
c
(4450) → J /ψ p
take place through the relative P-wave channel, the decays
P
c
(4380) → J /ψ p are kinematically favored and P
c
(4380)
has larger width. The preferred spin-parities of P
c
(4380) and
P
c
(4450) are J
P
=
3
2
−
and
5
2
+
, respectively. There have
been several attempted assignments, such as
c
¯
D
∗
,
∗
c
¯
D
∗
,
χ
c1
p, J/ψ N (1440), and the J /ψ N(1520) molecule-like
pentaquark states [2–11] (or not the molecular pentaquark
states [12]), the diquark–diquark–antiquark type pentaquark
a
e-mail: zgwang@aliyun.com
states [13–22], the diquark–triquark type pentaquark states
[23], re-scattering effects [24–27], etc.
The quarks have color SU(3) symmetry; we can con-
struct the pentaquark configurations according to the routine
quark → diquark → pentaquark,
(3 ⊗ 3) ⊗ (3 ⊗ 3) ⊗
3
= (
3 ⊕ 6) ⊗ (3 ⊕ 6) ⊗ 3 = 3 ⊗ 3 ⊗ 3 ⊕···=1 ⊕···,
(1)
where 1, 3 (
3), and 6 denote the color singlet, triplet
(antitriplet), and sextet, respectively. The diquarks q
T
j
Cq
k
have five structures in Dirac spinor space, where C = Cγ
5
,
C, Cγ
μ
γ
5
, Cγ
μ
, and Cσ
μν
for the scalar, pseudoscalar, vec-
tor, axialvector, and tensor diquarks, respectively, and the j
and k are color indices. The attractive interactions of one-
gluon exchange favor formation of the diquarks in color
antitriplet
3
c
, flavor antitriplet 3
f
, and spin singlet 1
s
[28,29],
while the favored configurations are the scalar (Cγ
5
) and
axialvector (Cγ
μ
) diquark states [30–32]. The calculations
based on the QCD sum rules indicate that the heavy-light
scalar and axialvector diquark states have almost degener-
ate masses [30,31], while the masses of the light axialvector
diquark states lie (150–200) MeV above that of the light
scalar-diquark states [32], if they have the same quark con-
stituents.
In Refs. [19,20], we choose the light scalar diquark
and heavy axialvector diquark (or heavy scalar diquark) as
the basic constituents, construct both the scalar-diquark–
axialvector-diquark–antiquark type and scalar-diquark–
scalar-diquark–antiquark type interpolating currents, which
are supposed to couple potentially to the lowest pentaquark
states according to the light scalar-diquark constituent [32],
then calculate the contributions of the vacuum condensates
up to dimension 10 in the operator product expansion and
study the masses and pole residues of J
P
=
3
2
−
,
5
2
+
, and
1
2
±
hidden-charm pentaquark states with the QCD sum rules. The
numerical results favor assigning P
c
(4380) and P
c
(4450)
123
142 Page 2 of 21 Eur. Phys. J. C (2016) 76 :142
to be the
3
2
−
and
5
2
+
diquark–diquark–antiquark type pen-
taquark states, respectively [19]. In Ref. [19], we take the
energy-scale formula μ =
M
2
P
− (2M
c
)
2
to determine the
energy scales of the QCD spectral densities, the resulting pole
contributions are about (40–60) %, and the contributions of
the vacuum condensates of dimension 10 are less than 5 %,
the two criteria (pole dominance at the phenomenological
side and convergence of the operator product expansion) of
the conventional QCD sum rules can be satisfied. Now we
extend our previous work to study the
1
2
±
hidden-charm pen-
taquark states in a systematic way, where the energy-scale
formula μ =
M
2
P
− (2M
c
)
2
serves as an additional con-
straint on the predicted masses. All the predictions can be
confronted with the experimental data in the future, and the
assignments of P
c
(4380) and P
c
(4450) in the scenario of
the diquark–diquark–antiquark type pentaquark states can
be testified.
In this article, we take the light axialvector diquarks and
heavy axialvector diquarks (and heavy scalar diquarks) as
the basic constituents, and study the axialvector-diquark–
axialvector-diquark–antiquark type and axialvector-diquark–
scalar-diquark–antiquark type pentaquark configurations.
Now we illustrate how to construct the pentaquark config-
urations in the diquark–diquark–antiquark model according
to the spin-parity J
P
,
1
+
q
1
q
2
⊗ 0
+
q
3
c
⊗
1
2
−
¯c
=
1
2
−
q
1
q
2
q
3
c ¯c
⊕
3
2
−
q
1
q
2
q
3
c ¯c
, (2)
1
+
q
1
q
2
⊗ 1
+
q
3
c
⊗
1
2
−
¯c
=
0
+
q
1
q
2
q
3
c
⊕ 1
+
q
1
q
2
q
3
c
⊕ 2
+
q
1
q
2
q
3
c
⊗
1
2
−
¯c
=
1
2
−
q
1
q
2
q
3
c ¯c
⊕
1
2
−
q
1
q
2
q
3
c ¯c
⊕
3
2
−
q
1
q
2
q
3
c ¯c
⊕
3
2
−
q
1
q
2
q
3
c ¯c
⊕
5
2
−
q
1
q
2
q
3
c ¯c
, (3)
1
+
q
1
q
2
⊗ 0
+
q
3
c
⊗
1
−
⊗
1
2
−
¯c
= 1
+
q
1
q
2
⊗ 0
+
q
3
c
⊗
1
2
+
¯c
⊕
3
2
+
¯c
=
1
2
+
q
1
q
2
q
3
c ¯c
⊕
3
2
+
q
1
q
2
q
3
c ¯c
⊕
1
2
+
q
1
q
2
q
3
c ¯c
⊕
3
2
+
q
1
q
2
q
3
c ¯c
⊕
5
2
+
q
1
q
2
q
3
c ¯c
, (4)
1
+
q
1
q
2
⊗ 1
+
q
3
c
⊗
1
−
⊗
1
2
−
¯c
=
0
+
q
1
q
2
q
3
c
⊕ 1
+
q
1
q
2
q
3
c
⊕ 2
+
q
1
q
2
q
3
c
⊗
1
2
+
¯c
⊕
3
2
+
¯c
=
1
2
+
q
1
q
2
q
3
c ¯c
⊕
1
2
+
q
1
q
2
q
3
c ¯c
⊕
3
2
+
q
1
q
2
q
3
c ¯c
⊕
3
2
+
q
1
q
2
q
3
c ¯c
⊕
5
2
+
q
1
q
2
q
3
c ¯c
⊕
3
2
+
q
1
q
2
q
3
c ¯c
⊕
1
2
+
q
1
q
2
q
3
c ¯c
⊕
3
2
+
q
1
q
2
q
3
c ¯c
⊕
5
2
+
q
1
q
2
q
3
c ¯c
⊕
1
2
+
q
1
q
2
q
3
c ¯c
⊕
3
2
+
q
1
q
2
q
3
c ¯c
⊕
5
2
+
q
1
q
2
q
3
c ¯c
⊕
7
2
+
q
1
q
2
q
3
c ¯c
,
(5)
where 1
−
denotes the contribution of the additional P-wave
to the spin-parity, the subscripts q
1
q
2
, q
3
c, ... denote the
quark constituents. The quark and antiquark have opposite
parity, we usually take it for granted that the quarks have
positive parity, while the antiquarks have negative parity, so
the ¯c-quark has J
P
=
1
2
−
.
In this article, we study the pentaquark states with the
underlined spin-parity
1
2
±
q
1
q
2
q
3
c ¯c
, which are supposed to
be the lowest pentaquark states with the light axialvec-
tor diquarks. We construct both the axialvector-diquark–
axialvector-diquark–antiquark type and the axialvector-
diquark–scalar-diquark–antiquark type currents J (x) =
J
j
L
j
H
q
1
q
2
q
3
(x) according to Eqs. (2)–(3), where the superscripts
j
L
and j
H
denote the spins of the light diquark and heavy
diquark, respectively, the subscripts q
1
, q
2
, q
3
denote the light
quark constituents. We calculate the vacuum condensate up
to dimension 10 in the operator product expansion, and study
the masses and pole residues of the lowest pentaquark states
in a systematic way.
The article is arranged as follows: we derive the QCD sum
rules for the masses and pole residues of the
1
2
±
pentaquark
states in Sect. 2; in Sect. 3, we present the numerical results
and discussions; and Sect. 4 is reserved for our conclusion.
2 QCD sum rules for the
1
2
±
pentaquark states
We write down the two-point correlation functions
j
L
j
H
q
1
q
2
q
3
( p)
in the QCD sum rules,
j
L
j
H
q
1
q
2
q
3
( p) = i
d
4
xe
ip·x
0|T {J
j
L
j
H
q
1
q
2
q
3
(x)
¯
J
j
L
j
H
q
1
q
2
q
3
(0)}|0,
(6)
where
J
11
uuu
(x ) = ε
ila
ε
ijk
ε
lmn
u
T
j
(x )Cγ
μ
u
k
(x )u
T
m
(x )
×Cγ
μ
c
n
(x )C ¯c
T
a
(x ),
J
11
uud
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[u
T
j
(x )Cγ
μ
u
k
(x )d
T
m
(x )Cγ
μ
c
n
(x )
+2u
T
j
(x )Cγ
μ
d
k
(x )u
T
m
(x )Cγ
μ
c
n
(x )]C ¯c
T
a
(x ),
123
Eur. Phys. J. C (2016) 76 :142 Page 3 of 21 142
J
11
udd
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[d
T
j
(x )Cγ
μ
d
k
(x )u
T
m
(x )Cγ
μ
c
n
(x )
+2d
T
j
(x )Cγ
μ
u
k
(x )d
T
m
(x )Cγ
μ
c
n
(x )]C ¯c
T
a
(x ),
J
11
ddd
(x ) = ε
ila
ε
ijk
ε
lmn
d
T
j
(x )Cγ
μ
d
k
(x )d
T
m
(x )
×Cγ
μ
c
n
(x )C ¯c
T
a
(x ), (7)
J
11
uus
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[u
T
j
(x )Cγ
μ
u
k
(x )s
T
m
(x )Cγ
μ
c
n
(x )
+2u
T
j
(x )Cγ
μ
s
k
(x )u
T
m
(x )Cγ
μ
c
n
(x )]C ¯c
T
a
(x ),
J
11
uds
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[u
T
j
(x )Cγ
μ
d
k
(x )s
T
m
(x )Cγ
μ
c
n
(x )
+u
T
j
(x )Cγ
μ
s
k
(x )d
T
m
(x )Cγ
μ
c
n
(x )
+d
T
j
(x )Cγ
μ
s
k
(x )u
T
m
(x )Cγ
μ
c
n
(x )]C ¯c
T
a
(x ),
J
11
dds
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[d
T
j
(x )Cγ
μ
d
k
(x )s
T
m
(x )Cγ
μ
c
n
(x )
+2d
T
j
(x )Cγ
μ
s
k
(x )d
T
m
(x )Cγ
μ
c
n
(x )]C ¯c
T
a
(x ),
(8)
J
11
uss
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[s
T
j
(x )Cγ
μ
s
k
(x )u
T
m
(x )Cγ
μ
c
n
(x )
+2s
T
j
(x )Cγ
μ
u
k
(x )s
T
m
(x )Cγ
μ
c
n
(x )]C ¯c
T
a
(x ),
J
11
dss
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[s
T
j
(x )Cγ
μ
s
k
(x )d
T
m
(x )Cγ
μ
c
n
(x )
+2s
T
j
(x )Cγ
μ
d
k
(x )s
T
m
(x )Cγ
μ
c
n
(x )]C ¯c
T
a
(x ),
(9)
J
11
sss
(x) = ε
ila
ε
ijk
ε
lmn
s
T
j
(x)Cγ
μ
s
k
(x)s
T
m
(x)
×Cγ
μ
c
n
(x)C ¯c
T
a
(x), (10)
J
10
uuu
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
u
T
j
(x )Cγ
μ
u
k
(x )
×u
T
m
(x )Cγ
5
c
n
(x )γ
5
γ
μ
C ¯c
T
a
(x ),
J
10
uud
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[u
T
j
(x )Cγ
μ
u
k
(x )d
T
m
(x )Cγ
5
c
n
(x )
+2u
T
j
(x )Cγ
μ
d
k
(x )u
T
m
(x )Cγ
5
c
n
(x )]γ
5
γ
μ
C ¯c
T
a
(x ),
J
10
udd
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[d
T
j
(x )Cγ
μ
d
k
(x )u
T
m
(x )Cγ
5
c
n
(x )
+2d
T
j
(x )Cγ
μ
u
k
(x )d
T
m
(x )Cγ
5
c
n
(x )]γ
5
γ
μ
C ¯c
T
a
(x ),
J
10
ddd
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
d
T
j
(x )Cγ
μ
d
k
(x )d
T
m
(x )
×Cγ
5
c
n
(x )γ
5
γ
μ
C ¯c
T
a
(x ), (11)
J
10
uus
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[u
T
j
(x )Cγ
μ
u
k
(x )s
T
m
(x )Cγ
5
c
n
(x )
+2u
T
j
(x )Cγ
μ
s
k
(x )u
T
m
(x )Cγ
5
c
n
(x )]γ
5
γ
μ
C ¯c
T
a
(x ),
J
10
uds
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[u
T
j
(x )Cγ
μ
d
k
(x )s
T
m
(x )Cγ
5
c
n
(x )
+u
T
j
(x )Cγ
μ
s
k
(x )d
T
m
(x )Cγ
5
c
n
(x )
+d
T
j
(x )Cγ
μ
s
k
(x )u
T
m
(x )Cγ
5
c
n
(x )]γ
5
γ
μ
C ¯c
T
a
(x ),
J
10
dds
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[d
T
j
(x )Cγ
μ
d
k
(x )s
T
m
(x )Cγ
5
c
n
(x )
+2d
T
j
(x )Cγ
μ
s
k
(x )d
T
m
(x )Cγ
5
c
n
(x )]γ
5
γ
μ
C ¯c
T
a
(x ),
(12)
J
10
uss
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[s
T
j
(x )Cγ
μ
s
k
(x )u
T
m
(x )Cγ
5
c
n
(x )
+2s
T
j
(x )Cγ
μ
u
k
(x )s
T
m
(x )Cγ
5
c
n
(x )]γ
5
γ
μ
C ¯c
T
a
(x ),
J
10
dss
(x ) =
ε
ila
ε
ijk
ε
lmn
√
3
[s
T
j
(x )Cγ
μ
s
k
(x )d
T
m
(x )Cγ
5
c
n
(x )
+2s
T
j
(x )Cγ
μ
d
k
(x )s
T
m
(x )Cγ
5
c
n
(x )]γ
5
γ
μ
C ¯c
T
a
(x ),
(13)
J
10
sss
(x) =
ε
ila
ε
ijk
ε
lmn
√
3
s
T
j
(x)Cγ
μ
s
k
(x)s
T
m
(x)
×Cγ
5
c
n
(x)γ
5
γ
μ
C ¯c
T
a
(x), (14)
i, j, k, l, m, n, and a are color indices, C is the charge
conjugation matrix. In the currents J
10
q
1
q
2
q
3
(x), the light axi-
alvector diquark combines with the heavy scalar diquark to
form a tetraquark with J
P
= 1
+
in color triplet according to
Eq. (2), while in the currents J
11
q
1
q
2
q
3
(x), the light axialvector
diquark combines with the heavy axialvector diquark to form
a tetraquark with J
P
= 0
+
in color triplet according to Eq.
(3). Then they couple with the antiquark to form pentaquark
states with J
P
=
1
2
−
in color singlet. In this article, we
take the isospin limit, and classify the currents couple to the
pentaquark states with degenerate masses into the following
eight types:
J
11
uuu,μ
(x), J
11
uud,μ
(x), J
11
udd ,μ
(x), J
11
ddd,μ
(x) ;
J
11
uus,μ
(x), J
11
uds,μ
(x), J
11
dds,μ
(x) ;
J
11
uss,μ
(x), J
11
dss,μ
(x) ;
J
11
sss,μ
(x) ;
J
10
uuu,μ
(x), J
10
uud,μ
(x), J
10
udd ,μ
(x), J
10
ddd,μ
(x) ;
J
10
uus,μ
(x), J
10
uds,μ
(x), J
10
dds,μ
(x) ;
J
10
uss,μ
(x), J
10
dss,μ
(x) ;
J
10
sss,μ
(x). (15)
In calculations, we choose the first current in each type.
The currents J
j
L
j
H
q
1
q
2
q
3
(0) have negative parity, and cou-
ple potentially to the
1
2
−
hidden-charm pentaquark states
123
142 Page 4 of 21 Eur. Phys. J. C (2016) 76 :142
P
j
L
j
H
1
2
q
1
q
2
q
3
(
1
2
−
), where the superscript
1
2
denotes the total angu-
lar momentum of the anti-c-quark ¯c,
0|J
j
L
j
H
q
1
q
2
q
3
(0)|P
j
L
j
H
1
2
q
1
q
2
q
3
1
2
−
( p)
= λ
−
P
U
−
( p, s), (16)
the λ
−
P
are the pole residues, the spinors U
−
( p, s) satisfy the
Dirac equations ( p − M
P,−
)U
−
( p, s) = 0, the s are the
polarization vectors of the pentaquark states. On the other
hand, the currents J
j
L
j
H
q
1
q
2
q
3
(0) also couple potentially to the
1
2
+
hidden-charm pentaquark states P
j
L
j
H
1
2
q
1
q
2
q
3
(
1
2
+
) as multiplying
iγ
5
to the currents J
j
L
j
H
q
1
q
2
q
3
(x) change their parity,
0|J
j
L
j
H
q
1
q
2
q
3
(0)|P
j
L
j
H
1
2
q
1
q
2
q
3
1
2
+
( p)
= λ
+
P
iγ
5
U
+
( p, s), (17)
the spinors U
±
( p, s) (pole residues λ
±
i
) have analogous
properties [33–40]. We can study the J
P
=
1
2
+
hidden-
charm pentaquark states without introducing the additional
P-wave explicitly; see Eqs. (4)–(5).
We insert a complete set of intermediate pentaquark states
with the same quantum numbers as the current operators
J (x) and iγ
5
J (x) into the correlation functions
j
L
j
H
q
1
q
2
q
3
( p)
to obtain the hadronic representation [41,42]. After isolat-
ing the pole terms of the lowest states of the hidden-charm
pentaquark states, we obtain the following results:
j
L
j
H
q
1
q
2
q
3
( p) = λ
−
P
2
p + M
P,−
M
2
P,−
− p
2
+ λ
+
P
2
p − M
P,+
M
2
P,+
− p
2
+···,
(18)
where the M
±
are the masses of the lowest pentaquark states
with the parity ±, respectively.
Now we obtain the hadronic spectral densities through the
dispersion relation,
Im
j
L
j
H
q
1
q
2
q
3
(s)
π
= p[λ
−
P
2
δ(s − M
2
P,−
) + λ
+
P
2
δ(s − M
2
P,+
)]
+[M
P,−
λ
−
P
2
δ(s − M
2
P,−
) − M
P,+
λ
+
P
2
δ(s − M
2
P,+
)],
= p ρ
j
L
j
H
,1
q
1
q
2
q
3
,H
(s) + ρ
j
L
j
H
,0
q
1
q
2
q
3
,H
(s), (19)
where the subscript index H denotes the hadron side, then
we introduce the weight function exp
−
s
T
2
to obtain the
QCD sum rules at the hadron side,
s
0
4m
2
c
ds
√
sρ
j
L
j
H
,1
q
1
q
2
q
3
,H
(s) + ρ
j
L
j
H
,0
q
1
q
2
q
3
,H
(s)
exp
−
s
T
2
= 2M
P,−
λ
−
P
2
exp
−
M
2
P,−
T
2
, (20)
s
0
4m
2
c
ds
√
sρ
j
L
j
H
,1
q
1
q
2
q
3
,H
(s) − ρ
j
L
j
H
,0
q
1
q
2
q
3
,H
(s)
exp
−
s
T
2
= 2M
P,+
λ
+
P
2
exp
−
M
2
P,+
T
2
, (21)
where the s
0
are the continuum threshold parameters and the
T
2
are the Borel parameters. We separate the contributions of
the negative-parity (positive-parity) pentaquark states from
the positive-parity (negative-parity) pentaquark states explic-
itly.
In the following, we briefly outline the operator product
expansion for the correlation functions
j
L
j
H
q
1
q
2
q
3
( p) in pertur-
bative QCD. First of all, we contract the u, s, and c quark
fields in the correlation functions
j
L
j
H
q
1
q
2
q
3
( p) with Wick the-
orem, and obtain the results:
11
uuu
( p) =−i ε
ila
ε
ijk
ε
lmn
ε
i
l
a
ε
i
j
k
ε
l
m
n
×
d
4
xe
ip·x
CC
T
a
a
(−x)C{2Tr[γ
μ
U
kk
(x)γ
ν
CU
T
jj
(x)C]
×Tr[γ
μ
C
nn
(x)γ
ν
CU
T
mm
(x)C]−4Tr[γ
μ
U
kk
(x)γ
ν
×CU
T
mj
(x)Cγ
μ
C
nn
(x)γ
ν
CU
T
jm
(x)C]}, (22)
11
uus
( p) =−
i
3
ε
ila
ε
ijk
ε
lmn
ε
i
l
a
ε
i
j
k
ε
l
m
n
×
d
4
xe
ip·x
CC
T
a
a
(−x )C
×{2Tr[γ
μ
U
kk
(x )γ
ν
CU
T
jj
(x )C] Tr[γ
μ
C
nn
(x )γ
ν
CS
T
mm
(x )C]
+4Tr[γ
μ
S
kk
(x )γ
ν
CU
T
jj
(x )C] Tr[γ
μ
C
nn
(x )γ
ν
CU
T
mm
(x )C]
−4Tr[γ
μ
U
kk
(x )γ
ν
CU
T
mj
(x )Cγ
μ
C
nn
(x )γ
ν
CS
T
jm
(x )C]
−4Tr[γ
μ
U
kk
(x )γ
ν
CS
T
mj
(x )Cγ
μ
C
nn
(x )γ
ν
CU
T
jm
(x )C]
−4Tr[γ
μ
S
kk
(x )γ
ν
CU
T
mj
(x )Cγ
μ
C
nn
(x )γ
ν
CU
T
jm
(x )C]},
(23)
11
uss
( p) =−
i
3
ε
ila
ε
ijk
ε
lmn
ε
i
l
a
ε
i
j
k
ε
l
m
n
×
d
4
xe
ip·x
CC
T
a
a
(−x )C
×{2Tr[γ
μ
S
kk
(x )γ
ν
CS
T
jj
(x )C] Tr[γ
μ
C
nn
(x )γ
ν
CU
T
mm
(x )C]
+4Tr[γ
μ
U
kk
(x )γ
ν
CS
T
jj
(x )C] Tr[γ
μ
C
nn
(x )γ
ν
CS
T
mm
(x )C]
−4Tr[γ
μ
S
kk
(x )γ
ν
CS
T
mj
(x )Cγ
μ
C
nn
(x )γ
ν
CU
T
jm
(x )C]
−4Tr[γ
μ
S
kk
(x )γ
ν
CU
T
mj
(x )Cγ
μ
C
nn
(x )γ
ν
CS
T
jm
(x )C]
−4Tr[γ
μ
U
kk
(x )γ
ν
CS
T
mj
(x )Cγ
μ
C
nn
(x )γ
ν
CS
T
jm
(x )C]},
(24)
11
sss
( p) =−i ε
ila
ε
ijk
ε
lmn
ε
i
l
a
ε
i
j
k
ε
l
m
n
×
d
4
xe
ip·x
CC
T
a
a
(−x )C
×{2Tr[γ
μ
S
kk
(x )γ
ν
CS
T
jj
(x )C] Tr[γ
μ
C
nn
(x )γ
ν
CS
T
mm
(x )C]
−4Tr[γ
μ
S
kk
(x )γ
ν
CS
T
mj
(x )Cγ
μ
C
nn
(x )γ
ν
CS
T
jm
(x )C]},
(25)
10
uuu
( p) =−i ε
ila
ε
ijk
ε
lmn
ε
i
l
a
ε
i
j
k
ε
l
m
n
×
d
4
xe
ip·x
γ
5
γ
μ
CC
T
a
a
(−x )Cγ
ν
γ
5
×{2Tr[γ
μ
U
kk
(x )γ
ν
CU
T
jj
(x )C]Tr[γ
5
C
nn
(x )γ
5
CU
T
mm
(x )C]
−4Tr[γ
μ
U
kk
(x )γ
ν
CU
T
mj
(x )Cγ
5
C
nn
(x )γ
5
CU
T
jm
(x )C]}, (26)
123
剩余20页未读,继续阅读
资源评论
weixin_38680475
- 粉丝: 6
- 资源: 933
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功