没有合适的资源?快使用搜索试试~ 我知道了~
函数原型 tf.nn.dynamic_rnn( cell, inputs, sequence_length=None, initial_state=None, dtype=None, parallel_iterations=None, swap_memory=False, time_major=False, scope=None ) 实例讲解: import tensorflow as tf import numpy as np n_steps = 2 n_inputs = 3 n_neurons = 5 X = tf.placeholder(tf.fl
资源推荐
资源详情
资源评论
关于关于tf.nn.dynamic_rnn返回值详解返回值详解
函数原型函数原型
tf.nn.dynamic_rnn(
cell,
inputs,
sequence_length=None,
initial_state=None,
dtype=None,
parallel_iterations=None,
swap_memory=False,
time_major=False,
scope=None
)
实例讲解:
import tensorflow as tf
import numpy as np
n_steps = 2
n_inputs = 3
n_neurons = 5
X = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
basic_cell = tf.contrib.rnn.BasicRNNCell(num_units=n_neurons)
seq_length = tf.placeholder(tf.int32, [None])
outputs, states = tf.nn.dynamic_rnn(basic_cell, X, dtype=tf.float32,
sequence_length=seq_length)
init = tf.global_variables_initializer()
X_batch = np.array([
# step 0 step 1
[[0, 1, 2], [9, 8, 7]], # instance 1
[[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors)
[[6, 7, 8], [6, 5, 4]], # instance 3
[[9, 0, 1], [3, 2, 1]], # instance 4
])
seq_length_batch = np.array([2, 1, 2, 2])
with tf.Session() as sess:
init.run()
outputs_val, states_val = sess.run(
[outputs, states], feed_dict={X: X_batch, seq_length: seq_length_batch})
print("outputs_val.shape:", outputs_val.shape, "states_val.shape:", states_val.shape)
print("outputs_val:", outputs_val, "states_val:", states_val)
log info:
outputs_val.shape: (4, 2, 5) states_val.shape: (4, 5)
outputs_val:
[[[ 0.53073734 -0.61281306 -0.5437517 0.7320347 -0.6109526 ] [ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976]]
[[ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ] [ 0. 0. 0. 0. 0. ]]
[[ 0.99992317 0.96815354 -0.985101 0.9995968 -0.9999936 ] [ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355]]
[[ 0.99999255 0.9998929 0.26732785 0.36024097 -0.99991137] [ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]] states_val:
[[ 0.99996936 0.99990636 -0.9867181 0.99726075 -0.99999976] [ 0.9931584 0.5877845 -0.9100412 0.988892 -0.9982337 ] [ 0.99948144 0.9998127 -
0.57493806 0.91015154 -0.99998355] [ 0.98875254 0.9922327 0.6505734 0.4732064 -0.9957567 ]]
首先输入X是一个 [batch_size,step,input_size] = [4,2,3] 的tensor,注意我们这里调用的是BasicRNNCell,只有一层循
环网络,outputs是最后一层每个step的输出,它的结构是[batch_size,step,n_neurons] = [4,2,5],states是每一层的最
后那个step的输出,由于本例中,我们的循环网络只有一个隐藏层,所以它就代表这一层的最后那个step的输出,因此它和
step的大小是没有关系的,我们的X有4个样本组成,输出神经元大小n_neurons是5,因此states的结构就是
[batch_size,n_neurons] = [4,5],最后我们观察数据,states的每条数据正好就是outputs的最后一个step的输出。
下面我们继续讲解多个隐藏层的情况,这里是三个隐藏层,注意我们这里仍然是调用下面我们继续讲解多个隐藏层的情况,这里是三个隐藏层,注意我们这里仍然是调用BasicRNNCell
资源评论
weixin_38665122
- 粉丝: 3
- 资源: 943
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 技术资料分享TF卡资料很好的技术资料.zip
- 技术资料分享TF介绍很好的技术资料.zip
- 10、安徽省大学生学科和技能竞赛A、B类项目列表(2019年版).xlsx
- 9、教育主管部门公布学科竞赛(2015版)-方喻飞
- C语言-leetcode题解之83-remove-duplicates-from-sorted-list.c
- C语言-leetcode题解之79-word-search.c
- C语言-leetcode题解之78-subsets.c
- C语言-leetcode题解之75-sort-colors.c
- C语言-leetcode题解之74-search-a-2d-matrix.c
- C语言-leetcode题解之73-set-matrix-zeroes.c
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功