没有合适的资源?快使用搜索试试~ 我知道了~
针对Web攻击流量检测问题,提出一种基于动态自适应池化算法(Dynamic Adaptive Pooling Algorithm,DAPA)的卷积神经网络模型。首先将数据集中每一条请求流量进行剪裁、对齐、补足等操作,生成一系列50×150的矩阵数据A作为输入,然后搭建基于动态自适应的卷积神经网络模型去进行异常流量检测,使之可以根据特征图的不同,动态地调整池化过程,在网络结构中添加Dropout层来解决流量特征提取过程中的过拟合问题。实验表明,该方法比未使用动态自适应池化的方式精确度提升了1.2%,损失值降低了2.6%,过拟合问题也得到了解决。
资源推荐
资源评论
资源评论
weixin_38663007
- 粉丝: 4
- 资源: 904
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功