针对K-means聚类算法依赖于初始值并易陷入局部最优值的问题,提出了一种基于改进花朵授粉的K-means聚类算法。该算法首先通过混沌映射的序列作为花朵种群的初值位置,保证花朵种群在搜索空间的多样性、确定性;然后在花朵授粉的后期搜索阶段引入禁忌搜索算法以避免陷入局部最优解;最后将改进后的FPA算法用于优化K-means算法的初值。在五个聚类数据集上的实验结果表明,改进后算法的平均聚类准确率相比于花朵授粉聚类算法提高了12.2%,证明了该算法对于低维数据集具有更好的聚类效果。
评论星级较低,若资源使用遇到问题可联系上传者,3个工作日内问题未解决可申请退款~