tensorflow 实现从实现从checkpoint中获取中获取graph信息信息
代码:代码:
import tensorflow as tf
sess = tf.Session()
check_point_path = 'variables'
saver = tf.train.import_meta_graph('variables/save_variables.ckpt.meta')
saver.restore(sess, tf.train.latest_checkpoint(check_point_path))
graph = tf.get_default_graph()
#print(graph.get_operations())
#with open('op.txt','a') as f:
# f.write(str(graph.get_operations()))
op1 = graph.get_tensor_by_name('fully_connected/biases:0')
print(op1)
使用函数graph.get_operations()获取ckpt.meta中保存的graph中的所有operation,而tensor_name为’op_name:0’。
然后使用graph.get_tensor_by_name(‘op_name:0’) 获取tensor信息。
代码从ckpt文件中获取保存的variable的数据(tensor的name和value):
import os
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow
check_point_path = 'variables'
#checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
ckpt = tf.train.get_checkpoint_state(checkpoint_dir=check_point_path)
checkpoint_path = os.path.join('.', ckpt.model_checkpoint_path)
#print(ckpt.model_checkpoint_path)
reader = pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map = reader.get_variable_to_shape_map()
for key in var_to_shape_map:
print("tensor_name: ", key)
#print(reader.get_tensor(key))
法二:法二:
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
print_tensors_in_checkpoint_file("variables/save_variables.ckpt",tensor_name='', all_tensors=False,
all_tensor_names=False)
注意:tf.train.latest_checkpoint(check_point_path) 方法用来获取最后一次ckeckpoint的路径,等价于
ckpt = tf.train.get_checkpoint_state(check_point_path)
ckpt.model_checkpoint_path
不能将tf.train.latest_checkpoint与tf.train.get_checkpoint_state 搞混了
以上这篇tensorflow 实现从checkpoint中获取graph信息就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望
大家多多支持软件开发网。
您可能感兴趣的文章您可能感兴趣的文章:tensorflow实现训练变量checkpoint的保存与读取Tensorflow: 从checkpoint文件中读取tensor方式给
TensorFlow 变量进行赋值的方式Tensorflow 定义变量,函数,数值计算等名字的更新方式TensorFlow 输出checkpoint 中的变量
名与变量值方式
评论0
最新资源