朴素贝叶斯分类方法是一种广泛使用的分类算法,在独立性假设不完全满足的情况下计算效率和分类效果均较为理想,通过分析全局特征向量中各特征与类别属性之间的联系,提出将组合特征置换多源特征,用组合特征的共现率对多源特征进行概率调整的新方法,在不同数据集的实验中,调整后的朴素贝叶斯分类器(FRNB)的分类精度均好于传统朴素贝叶斯分类器,测试结果表明,改进后的算法是有效可行的。
评论星级较低,若资源使用遇到问题可联系上传者,3个工作日内问题未解决可申请退款~