# model-sensitivity-analysis
## Latin hypercube sampling and partial rank correlation coefficients for analyzing model parameter sensitivity.
LHS + PRCC is a useful method for investigating the sensitivity of a mathematical model to it's parameters. This can be useful in developing the model to understand how it behaves in various parameter regimes, as well as to understand better how uncertainty in your parameter estimates may impact the results given by the model.
An overview of the procedure is provided as a pdf slide deck. The LHS method for parameter sampling in Monte Carlo studies was first developed by [McKay, Beckman, and Conover, 1979](https://doi.org/10.1080/00401706.1979.10489755) and was applied in conjunction with partial rank correlation coefficients for use in biomathematical models in [Blower and Dowlatabadi 1994](http://doi.org/10.2307/1403510). *A brief illustration of utility of this method as applied to the [proliferation-invasion-recruitment model](https://github.com/scmassey/2D_Proliferation-Invasion-Recruitment) will be on BioRxiv (as part of the mathematical oncology channel) in the near future.*
This repository contains code to conduct LHS+PRCC analysis in either matlab or python, depending on user preference.
### Matlab
The Matlab file LHSPRCC.m is the main code file which calls the function DrawSamples.m to perform the Latin hypercube sampling step, any user-specified model functions for completing the Monte-Carlo Simulations, and either UnariedPRCC.m or VariedPRCC.m to compute partial rank correlation coefficients (at a single time/location index or at all times/locations). LHSPRCC.m also calls the functions plotSampleHists.m, plotSimulationOutput.m and plotUnvariedPRCC.m or plotVariedPRCC.m to display results from these various steps.
Specifics about the sampled parameters are requested as user inputs in the command line, but a few code adjustments will need to be made as well to specify the particular model to be investigated as well as the output of interest for examining correlation between parameter space and model results.
Presently the code solves the linear function y=mx+b as a trivial example for the Monte Carlo simulations step. This is defined by the function testlinear.m which has the sampled parameters m and b. Note that this has a simple single output for computing PRCCs, but for models that are comprised of systems of equations with multiple dependent variables, the user will need to specify the particular output that they would like to investigate (either a single variable, or a sum or ratio of variables perhaps).
### Python
The Jupyter notebook LHS-PRCC.ipynb does the same procedure but is contained in a single file. Some user inputs can be done through interactive modules, while specifying the model and output of interest will need to be specified in the code itself. Further, the LHS-PRCC.ipynb notebook can be accessed using Google Colab so that users who are new to python may use the code and try it out without need to install a local python distribution.
![avatar](https://profile-avatar.csdnimg.cn/default.jpg!1)
weixin_38658982
- 粉丝: 7
- 资源: 940
最新资源
- 线控转向失效下容错差动转向协同控制策略研究-面向四轮轮毂电机驱动电动汽车,线控转向失效下的容错差动转向与横摆力矩协同控制方法,线控转向失效下的容错差动转向控制 以四轮轮毂电机驱动智能电动汽车为研究对
- 基于SSM的物业管理系统(有报告)。Javaee项目。ssm项目。
- Springboot+vue的人事管理系统(有报告),Javaee项目,springboot vue前后端分离项目。
- 基于SSM的影视创作论坛(有报告)。Javaee项目。ssm项目。
- 基于FPGA的FSK实现:Verilog代码详解与仿真验证,附上板测试报告及高难度代码深度解析文档,基于FPGA的FSK实现详解:Verilog代码实践与仿真上板全流程,基于fpga的fsk实现,代码
- Linux环境下ffmpeg与SDL2驱动的视频播放器构建方法
- Springboot+vue的在线试题题库管理系统(有报告),Javaee项目,springboot vue前后端分离项目。
- 基于Springboot的会员制医疗预约服务管理信息系统(有报告)。Javaee项目,springboot项目。
- 《含光伏550kW 33节点系统PSCAD接线图及其对谐波含量低的影响分析:兼顾电动汽车充电桩负荷的研究》,含光伏接入的33节点系统PSCAD接线图解析:550kW容量下的谐波含量微小分析及其与双电动
- ssm+vue的公司人力资源管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。
- 基于SSM的老年公寓信息管理(有报告)。Javaee项目
- 基于SSM的文化线上体验馆(有报告)。Javaee项目。ssm项目。
- ssm+vue的OA办公系统(有报告)。Javaee项目,ssm vue前后端分离项目。
- 11.2版本SLM模拟教程:利用Flow3D软件进行高能量密度下匙孔孔隙的数值模拟与计算流体动力学分析,Flow3D模拟优化:11.2版本SLM增材制造数值模拟教程-模拟高能量密度下选区激光熔化匙孔
- 基于SSM的高校疫情防控出入信息管理系统(有报告)。Javaee项目。
- Springboot+vue的高校毕业与学位资格审核系统。Javaee项目,springboot vue前后端分离项目。
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)
评论0