基于基于FPGA的交流电测量仪的设计的交流电测量仪的设计
摘 要: 根据交流采样的原理,设计出基于FPGA开方算法,解决了实时计算电压有效值和频率的问题。充分发
挥FPGA硬件并行计算的特性,实现高速运算和可靠性的结合, 能够较好地解决精度与速度的问题。为稳定控制
装置快速判断元件故障提供了充足时间,满足电力系统实时性、可靠性的要求。 在电力调度自动化系统
中,测量电压和频率是重要的功能。如何快速、准确地采集显得尤为重要。目前根据采集信号的不同,可分直
流采样和交流采样两种方式,直流采样虽然设计简单,但无法实现实时信号的采集;变送器的精度和稳定性对
测量精度有很大影响,无法满足电力系统实时性、可靠性的要求 。交流采样法按照一定规律对被测信号的瞬时
值进行
摘 要: 根据交流采样的原理,设计出基于FPGA开方算法,解决了实时计算电压有效值和频率的问题。充分发挥FPGA硬
件并行计算的特性,实现高速运算和可靠性的结合, 能够较好地解决精度与速度的问题。为稳定控制装置快速判断元件故障提
供了充足时间,满足电力系统实时性、可靠性的要求。
在电力调度自动化系统中,测量电压和频率是重要的功能。如何快速、准确地采集显得尤为重要。目前根据采集信号的不
同,可分直流采样和交流采样两种方式,直流采样虽然设计简单,但无法实现实时信号的采集;变送器的精度和稳定性对测量
精度有很大影响,无法满足电力系统实时性、可靠性的要求 。交流采样法按照一定规律对被测信号的瞬时值进行实时采样, 再
按设计的算法进行数值处理, 从而获得测量值。与直流采样法相比更易获得高精度、高稳定性的测量结果。由于FPGA运行速
度快、内部程序并行运行,具有处理更复杂功能的能力,因此FPGA[1-3]和交流采样相结合,可以满足电力系统实时性、可靠
性的要求。
1 系统硬件电路组成系统硬件电路组成
以日常照明所用的交流电(电压为220 V,频率为50 Hz)为测量对象,测量系统的组成电路主要包含供电、互感变压器
(TV)、A/D转换电路以及FPGA、显示电路和报警电路。测量系统框图如图1所示。
220 V交流电压经过互感变压器(TV)后的输出电压为-10 V~+10 V,满足电压芯片ADS7804输入端的要求,通过
ADS7804将输入的模拟量转换成数字量送到FPGA,得到量化电压值。一方面在一个周期(0.02 s)内对电压的采样值采用计
算均方根的方法计算出交流的有效值即电压的大小;另一方面对量化的电压值进行分析,计算出2个正弦波的时间,并算出频
率。通过显示电路分别显示电压值和频率值。如果电压低于正常电压的80%或达到正常电压的120%,或者频率低于49.00 Hz
或高于51.00 Hz时,启动报警电路。
1.1 电压互感器电压互感器
该仪表设计测量范围为0~220 V 左右的交流电, 因此峰值电压为220√2 V,即311 V,同时考虑电压波动的影响以及
ADS7804芯片的电压范围为-10 V~+10 V,选取TV 线圈的初级与次级比为40 :1 , 使其输出电压为-10 V~+10 V。
1.2 ADS7804芯片芯片
ADS7804芯片是12位A/D转换器,以其较高的性能价格比在仪器仪表中得到广泛的应用。ADS7804芯片内部含有采样保
持、电压基准和时钟等电路,可极大简化用户的电路设计,减少硬件开销,并可提高系统的稳定性。该A/D转换器采用逐次
逼近式工作原理,单通道输入,模拟输入电压的范围为±10 V,采样速率为100 kHz,可以完全满足电力系统中50 Hz交流电的
采样需要。
ADS7804芯片的VIN(1脚)为输入的模拟信号,输入模拟量大小为-10 V~+10 V,6~18脚为输入模拟信号转换的数字量并
行输出口,用于将转换的数字量输出,CS(25脚)为片选信, R/C(24脚)为读取结果/模数转换控制信号,BUSY(26脚)用于指示转
换是否完成。读取时首先将R/C脚电平变低;然后在CS脚输人一个脉冲并在其下降沿启动A/D转换,此脉冲的宽度要求在40
ns之内;这时BUSY脚电平拉低表示正在进行转换;在经过大约40 ns~6 μs以后,转换完成,BUSY脚电平相应变高;再把
R/C脚电平拉高,这样,CS脚脉冲的下降沿即把转换结果输出到数据总线。
ADS7804芯片将模拟电压转换为数字量,以二进制的补码输出。该芯片电压分辨率高达4.88 mV。
1..3 FPGA芯片芯片
现场可编程门阵列(FPGA)作为专用集成电路(ASIC) 领域中的一种半定制电路而出现,是当今数字系统设计的主要硬件平
台,其主要特点就是完全由用户通过软件进行配置和编程,从而完成某种特定的功能。在修改和升级时,不需额外地改变
PCB 电路板,只是在计算机上修改和更新程序,使硬件设计工作转变为软件开发工作,缩短了系统设计的周期,提高了实现
的灵活性并降低了成本,因此得到广泛的应用。