基于深层孪生网络的目标跟踪算法普遍缺乏目标模板在线更新方法,从而在某些复杂应用场景中适应能力较差。针对这一问题,提出一种基于光流映射的目标模板在线更新算法,该算法能够在保证实时性的前提下有效提高对复杂场景的适应能力。首先在跟踪过程中计算模板帧之间的光流信息;其次由光流映射和残差计算获取目标的运动变化信息。除此以外,还提出一种基于奇异值分解的由初始帧生成的修正项以修正目标位置偏差的方法。在OTB100和VOT2016数据集上对所提算法进行测试评估,结果显示,所提算法可以较好地优化新生成的目标模板,增强算法的鲁棒性,且与现有的跟踪算法相比,所提算法结果更佳。