Java矩阵连乘问题(动态规划)算法实例分析 本文主要介绍了Java矩阵连乘问题的动态规划算法实例分析。矩阵连乘问题是指给定n个矩阵,确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 矩阵连乘问题的描述 矩阵连乘问题可以描述为:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。 矩阵连乘问题的分析 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。 动态规划算法 为了解决矩阵连乘问题,可以使用动态规划算法。动态规划算法是通过将问题分解成多个小问题,然后递归地解决这些小问题,最后将解决方案组合起来得到原问题的解决方案。 在本文中,我们使用动态规划算法来解决矩阵连乘问题。我们定义了一个二维数组m[i][j],其中m[i][j]表示计算矩阵链A[i:j]的最少数乘次数。然后,我们可以使用递推关系来计算m[i][j]的值。 递推关系可以描述为: m[i][j]=m[i][k]+m[k+1][j]+pi-1pkpj 其中,k是断开点的位置,i<=k<j。 构造最优解 在计算出最优值m[i][j]后,可以递归地由s[i][j]构造出相应的最优解。s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在矩阵Ak和Ak+1之间断开,即最优的加括号方式应为(A[i:k])(A[k+1:j)。 Java实现 在本文中,我们还提供了Java实现的代码,用于计算矩阵连乘问题的解决方案。 package Matrix; public class Matrix { public static void MatrixChain(int[] p,int n, int[][] m, int[][] s) { for (int i = 1; i <= n; i++) { m[i][i] = 0; } for(int r = 2;r <= n; r++ ) { for(int i = 1; i <= n-r+1; i++) { int j = i+r-1; m[i][j] = m[i+1][j] + p[i-1]*p[i]*p[j]; s[i][j] = i; for(int k = i+1; k < j; k++) { int t = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j]; if(t < m[i][j]) { m[i][j] = t; s[i][j] = k; } } } } } } 结论 本文中,我们介绍了Java矩阵连乘问题的动态规划算法实例分析。通过使用动态规划算法,我们可以解决矩阵连乘问题,确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
- 粉丝: 6
- 资源: 876
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于ssh员工管理系统
- 5G SRM815模组原理框图.jpg
- T型3电平逆变器,lcl滤波器滤波器参数计算,半导体损耗计算,逆变电感参数设计损耗计算 mathcad格式输出,方便修改 同时支持plecs损耗仿真,基于plecs的闭环仿真,电压外环,电流内环
- 毒舌(解锁版).apk
- 显示HEX、S19、Bin、VBF等其他汽车制造商特定的文件格式
- 操作系统实验 Ucore lab5
- 8bit逐次逼近型SAR ADC电路设计成品 入门时期的第三款sarADC,适合新手学习等 包括电路文件和详细设计文档 smic0.18工艺,单端结构,3.3V供电 整体采样率500k,可实现基
- 操作系统实验 ucorelab4内核线程管理
- 脉冲注入法,持续注入,启动低速运行过程中注入,电感法,ipd,力矩保持,无霍尔无感方案,媲美有霍尔效果 bldc控制器方案,无刷电机 提供源码,原理图
- Matlab Simulink#直驱永磁风电机组并网仿真模型 基于永磁直驱式风机并网仿真模型 采用背靠背双PWM变流器,先整流,再逆变 不仅实现电机侧的有功、无功功率的解耦控制和转速调节,而且能实