没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
已使用高接受度双电子光谱仪(HADES)在GSI上以氘核入射束能量1.25 GeV /核子(sˆ¼2)进行了标记为准的无npfreenpÏ+ Ïâˆ反应的研究。 42 GeV / c(准无碰撞)。 这是第一次,在与次级粒子较大的横向动量相对应的区域中,收集了np碰撞中“ +”产生的固体统计量的微分分布。 将npânpÏ+ Ïâˆ反应的不变质量和角度分布与不同模型进行比较。 这种比较证实了T通道在Î贡献方面的优势。 它也验证了先前在Valencia模型中引入的变化,以描述其他等旋流通道中的两点生产数据,尽管观察到了一些偏差,尤其是对于“ ++”恒定质谱。 提取的总横截面也与此模型更好地吻合。 我们的新测量结果为质量M2.32.38 GeV和宽度为ˆ70 MeV的推测的重子共振的存在提出了有用的限制。
资源推荐
资源详情
资源评论
Physics Letters B 750 (2015) 184–193
Contents lists available at ScienceDirect
Physics Letters B
www.elsevier.com/locate/physletb
Study of the quasi-free np →npπ
+
π
−
reaction with a deuterium
beam at 1.25 GeV/nucleon
G. Agakishiev
g
, A. Balanda
c
, D. Belver
q
, A.V. Belyaev
g
, A. Blanco
b
, M. Böhmer
j
,
J.L. Boyard
o
, P. Braun-Munzinger
d,3
, P. Cabanelas
q
, E. Castro
q
, S. Chernenko
g
, T. Christ
j
,
M. Destefanis
k
, J. Díaz
r
, F. Dohrmann
f
, A. Dybczak
c
, L. Fabbietti
i
, O.V. Fateev
g
,
P. Finocchiaro
a
, P. Fonte
b,2
, J. Friese
j
, I. Fröhlich
h
, T. Galatyuk
e,3
, J.A. Garzón
q
,
R. Gernhäuser
j
, A. Gil
r
, C. Gilardi
k
, K. Göbel
h
, M. Golubeva
m
, D. González-Díaz
d
,
F. Guber
m
, M. Gumberidze
e
, T. Hennino
o
, R. Holzmann
d
, A. Ierusalimov
g
, I. Iori
l,5
,
A. Ivashkin
m
, M. Jurkovic
j
, B. Kämpfer
f,4
, T. Karavicheva
m
, D. Kirschner
k
, I. Koenig
d
,
W. Koenig
d
, B.W. Kolb
d
, R. Kotte
f
, F. Krizek
p
, R. Krücken
j
, W. Kühn
k
, A. Kugler
p
,
A. Kurepin
m
, A. Kurilkin
g,∗
, P. Kurilkin
g
, V. Ladygin
g,∗
, S. Lang
d
, J.S. Lange
k
, K. Lapidus
i
,
T. Liu
o
, L. Lopes
b
, M. Lorenz
h
, L. Maier
j
, A. Mangiarotti
b
, J. Markert
h
, V. Metag
k
,
B. Michalska
c
, J. Michel
h
, E. Morinière
o
, J. Mousa
n
, C. Müntz
h
, L. Naumann
f
,
J. Otwinowski
c
, Y.C. Pachmayer
h
, M. Palka
c
, Y. Parpottas
n,6
, V. Pechenov
d
,
O. Pechenova
h
, J. Pietraszko
h
, W. Przygoda
c
, B. Ramstein
o,∗
, A. Reshetin
m
, A. Rustamov
h
,
A. Sadovsky
m
, P. Salabura
c
, A. Schmah
j,1
, E. Schwab
d
, Yu.G. Sobolev
p
, S. Spataro
k,7
,
B. Spruck
k
, H. Ströbele
h
, J. Stroth
h,d
, C. Sturm
d
, A. Tarantola
h
, K. Teilab
h
, P. Tlusty
p
,
M. Traxler
d
, R. Trebacz
c
, H. Tsertos
n
, V. Wagner
p
, T. Vasiliev
g
, M. Weber
j
,
M. Wisniowski
c
, T. Wojcik
c
, J. Wüstenfeld
f
, S. Yurevich
d
, Y. Zanevsky
g
, P. Zhou
f
a
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95125 Catania, Italy
b
LIP-Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal
c
Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
d
GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany
e
Technische Universität Darmstadt, 64289 Darmstadt, Germany
f
Institut für Strahlenphysik, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
g
Joint Institute of Nuclear Research, 141980 Dubna, Russia
h
Institut für Kernphysik, Goethe-Universität, 60438 Frankfurt, Germany
i
Excellence Cluster ‘Origin and Structure of the Universe’ , 85748 Garching, Germany
j
Physik Department E12, Technische Universität München, 85748 Garching, Germany
k
II. Physikalisches Institut, Justus Liebig Universität Giessen, 35392 Giessen, Germany
l
Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
m
Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia
n
Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
o
Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3 – Université Paris Sud, F-91406 Orsay Cedex, France
p
Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic
q
LabCAF. Dpto. Física de Partículas, Univ. de Santiago de Compostela, 15706 Santiago de Compostela, Spain
r
Instituto de Física Corpuscular, Universidad de Valencia-CSIC, 46971 Valencia, Spain
*
Corresponding authors.
E-mail
addresses: akurilkin@jinr.ru (A. Kurilkin), vladygin@jinr.ru (V. Ladygin), ramstein@ipno.in2p3.fr (B. Ramstein).
1
Also at Lawrence Berkeley National Laboratory, Berkeley, USA.
2
Also at ISEC Coimbra, Coimbra, Portugal.
3
Also at ExtreMe Matter Institute EMMI, 64291 Darmstadt, Germany.
4
Also at Technische Universität Dresden, 01062 Dresden, Germany.
5
Also at Dipartimento di Fisica, Università di Milano, 20133 Milano, Italy.
6
Also at Frederick University, 1036 Nicosia, Cyprus.
7
Also at Dipartimento di Fisica Generale and INFN, Università di Torino, 10125 Torino, Italy.
http://dx.doi.org/10.1016/j.physletb.2015.09.016
0370-2693/
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by
SCOAP
3
.
G. Agakishiev et al. / Physics Letters B 750 (2015) 184–193 185
a r t i c l e i n f o a b s t r a c t
Article history:
Received
13 March 2015
Received
in revised form 4 September 2015
Accepted
7 September 2015
Available
online 11 September 2015
Editor:
D.F. Geesaman
Keywords:
Two-pion
production
np collisions
Resonance
excitations
The tagged quasi-free np → npπ
+
π
−
reaction has been studied experimentally with the High Acceptance
Di-Electron Spectrometer (HADES) at GSI at a deuteron incident beam energy of 1.25 GeV/nucleon
(
√
s ∼ 2.42 GeV/c for the quasi-free collision). For the first time, differential distributions of solid
statistics for π
+
π
−
production in np collisions have been collected in the region corresponding to the
large transverse momenta of the secondary particles. The invariant mass and angular distributions for the
np →npπ
+
π
−
reaction are compared with different models. This comparison confirms the dominance of
the t-channel with contribution. It also validates the changes previously introduced in the Valencia
model to describe two-pion production data in other isospin channels, although some deviations are
observed, especially for the π
+
π
−
invariant mass spectrum. The extracted total cross section is also in
much better agreement with this model. Our new measurement puts useful constraints for the existence
of the conjectured dibaryon resonance at mass M ∼2.38 GeV and with width ∼ 70 MeV.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP
3
.
1. Introduction
The two-pion production in nucleon–nucleon (NN) collisions is
a rich source of information about the baryon excitation spectrum
and the baryon–baryon interactions. In addition to the excitation
of a resonance decaying into two pions, which can also be studied
in the π N → ππN [1] and γ N →ππN [2] reactions, the simul-
taneous
excitation of two baryons can be investigated in the NN
reactions.
By giving access to single and double baryon excitation
processes, which both play an important role in the NN dynamics
in the few GeV energy range and contribute significantly to meson
and dilepton production, the two-pion production appears as a key
process towards a better understanding of hadronic processes. In
comparison to the one-pion decay mode, it presents a different se-
lectivity
with respect to the various resonances. In particular, the
excitation of baryonic resonances coupled to the ρ meson can be
studied with the two pions in the isospin 1 channel. This is of
utmost interest for a better understanding of the dilepton produc-
tion
in nucleon–nucleon reactions, where these couplings manifest
clearly [3–5], and also in nucleon matter due to the expected mod-
ifications
of the ρ meson spectral functions [6]. Finally, the com-
parison
of two-pion production in pp and np channels could shed
some light on the origin of the surprisingly large isospin depen-
dence
of the dilepton emission observed by the HADES experiment
[7]. In particular, the ρ production mechanism via final state
interaction, which does not contribute in the pp channel, was re-
cently
proposed as an explanation for the different dilepton yield
measured in pp and pn channels [8]. It is therefore important to
check the description of the double process in the two-pion pro-
duction
channels.
Additionally,
following the intriguing results obtained by the
WASA Collaboration in the double pionic fusion reactions, a re-
newed
interest on the study of the two-pion production in NN
collisions
was sparked, in order to check the possible contribution
of a dibaryon resonance [9,10].
The
answer to all these open questions requires systematic
two-pion production measurements both in proton–proton and
neutron–proton collisions. Concerning proton–proton collisions,
a significant amount of data has been accumulated for various
two-pion final channels in bubble chamber experiments [11–23]
for
proton incident energies from the threshold up to 2.85 GeV.
Precise differential cross-sections have also been obtained recently
at CELSIUS and COSY up to 1.4 GeV [24–34], with an emphasis
on the π
0
π
0
production. The data base for the pn reaction from
the bubble chamber experiments is even more scarce [14,18,19,21,
35].
Very recently, however, precise measurements of total and dif-
ferential
cross sections for the np → ppπ
−
π
0
and np → npπ
0
π
0
became available from WASA at COSY at neutron energies from
1.075 to 1.36 GeV [36,37]. In the np → npπ
+
π
−
channel, differ-
ential
cross-sections are also known from Dubna measurements
[38,39], covering the beam incident energy range from 0.624 to
4.346 GeV.
Since
the chiral perturbation theory calculations for two-pion
production in NN collisions are available only near threshold
[40], several phenomenological models have been suggested for
the analysis of the double pion production in NN collisions in
the GeV energy range. The first theoretical developments related
to the two-pion production were based on the one-pion exchange
(OPE) model [41]. The reggeized π exchange model (OPER) [42,
43],
which uses the partial wave analysis results for π N elas-
tic
scattering [44], constitutes its most recent and most elaborate
modification. Lagrangian models were also introduced. The Valen-
cia
model by Alvarez-Ruso et al. [45] was first developed. It aimed
at a description of NN collisions at energies lower than 1.4 GeV and
included N(1440) and (1232) excitations. The Cao et al. model
[46], developed after the publication of new data at COSY and CEL-
SIUS,
has a larger range of applicability due to the inclusion of
resonances with mass up to 1.72 GeV. Both models qualitatively
reproduce the very fast increase of the cross section above thresh-
old
in the different two-pion production channels and predict the
dominance of two processes above 1GeV: the excitation of the
N(1440) resonance and subsequent decay into π or Nσ and the
double excitation.
However,
both models [45,46] have failed to reproduce the
π
0
π
0
spectra for the pp → pp π
0
π
0
reaction at beam energies
above 1.0 GeV [32,34], which motivated the development of the
so-called “modified Valencia model” [32], providing a much im-
proved
description of these data. This new model has been used
by the WASA Collaboration for the interpretation of the double pi-
onic
fusion reactions, after some additional changes to take into
account the deuteron formation. However, the observed resonant
behavior of the cross section of the pn →dπ
0
π
0
[9,10], associated
with a structure at low π
0
π
0
invariant mass (the so-called ABC
effect) could not be explained by such an approach and were in-
terpreted
as being due to a dibaryon resonance in the I = 0 NN
channel,
with a mass of 2.37 GeV/c
2
and a width of 70 MeV. This
hypothesis was further supported by the isospin decomposition
of the pn → dππ reaction [47]. The latter provided a consistent
description of both I = 0 and I = 1 channels by taking into ac-
count
the resonant contribution in addition to the conventional
t-channel processes described by the “modified Valencia model”.
Even more recently, the pn → ppπ
0
π
−
[36] reaction was also
consistently described with the same model. The accuracy of d
∗
resonance hypothesis is also supported by the SAID partial wave
剩余9页未读,继续阅读
资源评论
weixin_38639747
- 粉丝: 7
- 资源: 902
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 商用车整车主机厂产品级P2并联混合动力控制器功能规范,HCU控制策略,可以对照直接搭模型
- LMS基础实例,模态分析,锤击实验
- 成熟量产伺服控制器方案 汇川ISP500伺服,提供DSP程序和原理图,代码完整,学习工业代码的范例,含惯量识别,电机参数识别,PWM死区补偿,运动插补等功能
- 三菱Q26UDV系列PLC程序,威纶通触摸屏程序 铝壳电池干燥烘烤机 1.三菱Q26UDV主PLC,cclink总线控制三菱JE-c系列总线伺服电机,整机共40轴伺服运动控制,X,Y,Z三轴取放料伺服
- STM32 高频注入,FOC矢量控制 STM32 BLDC电机,FOC矢量控制驱动 采用stm32作为主控 支持BLDC电机,无刷电机 FOC矢量控制,无刷电机无感FOC 支持矢量控制,高频注入,无感
- 单台三相模块化多电平(mmc)小信号建模 内含功率外环、环流抑制、电流内环、PLL等控制部分完整建模 含参考文献和对应的仿真模型 动态特性如图
- 西门子PLC1200博途V16程序画面例程,具体项目工艺为制药厂生物发酵系统,程序内有报警,模拟量标定处理,温度PID,称重仪表USS通讯和基本的各种数字量控制,硬件组成包含称重仪表通讯及和ET200
- 风光互补与储能仿真 各种需求 风光储 dcdc mppt 逆变器
- 基于51单片机的多路温度检测proteus仿真-ds18b20(仿真+程序+原理图) 仿真图proteus 7.8 proteus 8.9 程序编译器:keil 4 keil 5 编程语言:C语言 功
- 《Python程序设计与算法基础教程(第三版)》PPT与教案
- 三相并网逆变器双闭环控制,电网电流外环电容电流内环控制算法,matlab Simulink仿真模型,有源阻尼,单位功率因数,电网电压和电流同相位
- Comsol散射体Anapole完全教学
- 西门子1200 1500博途单部电梯程序,文件包含一个四层电梯程序,三个六层电梯程序,版本TIA16 仅一个六层电梯有触摸屏画面,程序仅限于用于参考对比 博图版本V15.1及以上
- 15kW充电桩,大厂成熟性量产方案 FPC 15kW充电桩方案,大厂成熟性量产方案,全数字化控制,有原理图,通讯协议,无桥维也纳PFC+全桥LLC源码,可供学习和开发用
- 基于51单片机轮胎胎压气压监测测量仪-数码管显示(仿真+程序) 仿真图proteus 7.8 程序编译器:keil 4 keil 5 编程语言:C语言 主要研究内容: 本课程设计用MPX4115传感器
- 基于51单片机轮胎胎压监测系统-压力传感器(仿真+程序+报告) Proteus仿真版本:proteus7.8 程序编译器:keil 4 编程语言:C语言 基于单片机的轮胎压力检测报警系统设计,5
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功