没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
我们提出了一种新的不完全的增加结构算法,该算法结合了非循环确定模糊自动机的性质。由于该算法与隶属度有关,因此算法给出了与传统方法不同的运算函数,而且通过构造模拟状态使该算法可在有多输入状态的条件下运行。所以这个新的不完全增加结构算法较传统算法更可行和实用。新算法由两部分构成:增加模糊字符串到最小非循环确定模糊自动机和最小化增加模糊字符串后得到的自动机。因为在增加模糊字符串到最小非循环确定模糊自动机的过程中,运用了一些相关的新函数,所以得到的自动机仍然是确定的,而且没有增加任何无关的字符串到自动机的可识别语
资源推荐
资源详情
资源评论
CHINESE
JOURNAL
Aug.
2006
OF
ENGINEERING
MATHEMATICS
Vo!.
23
No.
4
Article
ID:
1005-3085(2006)04-0599-ω
Incremental
Construction
of
Minimal
Acyclic
Deterministic
Fu
zzy
Finite
Automaton
HU
Hong-li,
MO
Zhi-wen
(College ofMathematics and Software Science
, Sichuan Normal University,
Che
吨
du
610066)
Abstract:
We
presented a new semi-incremental algorithm, which combines with properties of acyclic
deterministic fuzzy automata. Because the algorithm is related with fuzzy membership
,
we
present some novel functions which make the new algorithm
different
仕
om
general
algorithm.
It
can be applied to multi-incoming (transitions) states by applying build-
imitate state. So the new semi-incremental algorithm
is
more useful and practical. The new
algorithm
is
composed of two parts: adding fuzzy strings to minimal acydic deterministic
fuzzy finite
state
automata (ADFFAs) and minimizing the resulting automata. Because
some novel functions are applied in the algorithm
for
adding fuzzy stings
to
ADFFAs. The
resulting automaton of the algorithm
is
still deterministic and
is
not added more
than
one
fuzzy string to automaton.
Keywords:
acyclic deterministic fuzzy finite automaton; fuzzy strings; semi-incremental algorithm;
build-imitate state; unnecessary-membership
state
Classification:
AMS(2000) 68Q19
CLC
number:
T312
Document
code:
A
1
Introduction
Fu
zzy
set
theory
has
received considerable
attention
since
its
inception[1,
2j.
A
wide
飞
rariety
of
tools
have
been
developed
basing
on
the
notion
of
fuzzy
membership
function.
for
example
,
there
has
been
an
increased
interest
in
combing fuzzy
systems
with
finite
automata.
The
notion
of
fuzzy
automata
was
introduced
by
Lee
and
Wee[3,
4j.
80me
basic
properties
of
fuzzy
automata
can
be
found
in
[5
,
6
,可.
As a design
tool
,
the
fuzzy
automata
should
be
best
, if
it
is
minima
l.
In
this
p
也.p
er
,
we
present
two
algorithms
for
adding
fuzzy
strings
to
acyclic
deterministic
fuzzy finite
automata
(ADFFAs)
and
minimizing
the
resulting
automata
,
semi-incremental
techniques
,町咆
used
to
constrict
minimal
ADFFAs.
The
semi-incremental
algorithm
is used
in
minimal
condition
, so
it
is
named
semi-incrementa
l.
This
was applied
in
some
papers[8,
9j
,
but
these
papers
only considered
the
general
automata.
In
this
paper
,
in
order
to
constricting
minimal
acyclic
deterministic
fuzzy finite
state
automata
, we would combine
the
general
semi-incremental techniques
with
fuzzy
nature.
Previous
work
on
the
semi-incremental
algorithm
is
not
applicable
to
the
multi-incoming
(transitions)
stat
臼
(in
some
pap
町
they
are
named
confuse states)[lO-13j. Nevertheless,
the
multi-incoming
(transitions)
states
usually exist, especially
in
minimal
automata.
The
new
semi-incremental
algorithm
given
in
this
paper
can
be
applied
to
multi-incoming
(transitions)
states.
80
the
new
algorithm
is
more
general
and
easier
to
implement.
Received date:
200
4-0
4-
12.
Biography:
Hu
Hongli
(Born
in
197η
,民
male
,
Master.
Re
search
field:
fuzzy
theory,
rou
也
h
theory and
finite
automaton.
600
CHINESE
JOURNAL
OF
ENGINEERING
MATHEMATICS
VOL.23
The
rest
of
the
paper
is
organized as follows. Some necessary
mathematical
preliminaries are
given in
the
section
2.
a new algorithm for adding fuzzy strings
to
minimal acyclic deterministic
fuzzy finite
automata
(ADFFAs) is proposed
in
the
section
3.
It
is described in detail
in
section 4
how
to
minimize
the
resulting
automata
(ADFFAs) from
the
algorithm for adding fuzzy strings
to
ADFFAs.
An
example of adding fuzzy strings
and
minimizing
the
resulting
automata
is
explained in
detail
in
the
section
5.
Some remarks
are
finally given
in
section 6.
2
Mathematical
Preliminaries
In
this
article,
we
consider ADFFAs.
The
algorithm of
this
paper
is readily
extended
to
acyclic nondeterministic fuzzy finite
automata.
The
nondeterministic fuzzy finite
automata
are
more useful
than
the
deterministic fuzzy
automata
in
practice.
But
the
extension is
not
considered in
this
paper. We begin
by
defining
the
deterministic fuzzy
automata.
Definition
2.1
A deterministic fuzzy finite
state
automata
(DFFAS) is a
6-t
叩
le
DFFA=
(Q
,
~,
8
,
μ
,
qo
,
F), where Q is a
缸
lite
set
of
states
,
~
is a
缸lÏ
te
set
of
symbols called
the
alphabet
,
qo
ε
Q
is
the
initial
state
, F ç Q is a
set
of
final
states
,
8:
Q x
~→
Q
is
the
state
transition
function
,
μ
:Qx~
→
[0
,
1]
is
the
fuzzy
transition
function,
and
the
following conditions
are
satisfied:
1)
for all
q
ε
Q
,
for all
a
ξ~
,
if
there
exists
p ε
Q
such
that
8(q,
a)
= p ,
then
μ
(q
,
a)
> 0,
2) for all q E Q, for all
αε~
,
if
there
isμ
(q
,
α)
> 0,
then
there
exists
p ε
Q
such
that
8(q
,
α
)
=p
,
The
extended
function
8*
: Q x
~*→
Q
is
defined as follows:
(6(qε)
=
q
εis
em
…
u
山
g
8*(q
,
α
x)
= 8*(8(q, a),
x)
, for all
αε~
and
x E
~*.
The
extended function
p,*
: Q x
~*→
[0
,
1]
is defined as follows:
(μ
(q
ε)
=
1ε
叫
y
叫"
μ
*(q
,
α
x)
=
μ
(q
,
a
冲
α
叫
)^μ*
气
(θ
8(q
,
a
冲
α
叫)
,
x)
, for all αε~
and
x
ε~*.
In
this
article, we consider a fuzzy
automaton
without
output
,
and
moreover
the
initial
state
qo
and
the
set
of
final
states
F
are
not
fuzzy. Any fuzzy
automaton
as
described in Definition
2.1 is equivalent
to
a fuzzy automaton[3l.
Definition
2.2
A deterministic fuzzy finite
state
automata
(DFFA ) is a acyclic deter-
ministic fuzzy
automaton
(ADFFA
),
if for all
αε~
and
q
ε
Q
,
8(q
,
a)
=
α.
Definition
2.3
Given a
ADFFA=(Q
,~,
8
,
μ
,酌,
F),
the
fuzzy language accepted
or
rec-
ognized
by
ADFFA is denoted by L (ADFFA ) (we call
it
recognized by ADFFA ). L (ADFFA
)={(ω
,也
)1ωε2
飞
8*(qo
,
ω)ε
F
and
μ
气
qo
,
ω
)=u
笋
O}
Definition
2
.4
A
ADFFA=(Q
,
旦,
8
,
μ
,
qo
,
F) is a complete ADFFA, if 8
and
μare
total
transition
functions.
Theorem
2.1
For a
ADFFA=(Q
,~,
8
,
μ
,酌
,
F)
,
there
exists a complete ADFFA*=(Q u
土,~,
8
,
μ
,酌
,
F)
,
where
...L
is
an
absorption
state
, such
that:
L(ADFFA
)=L
(ADFFA*)
剩余7页未读,继续阅读
资源评论
weixin_38628920
- 粉丝: 3
- 资源: 962
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于MPC的永磁同步电机非线性终端滑模控制仿真研究 matlab simulink 无参考文件
- 本科生课程设计封面.doc
- 基于动物群体行为优化的多椭圆检测算法及其在图像处理的应用
- 适用方向:基于LQR控制算法的直接横摆力矩控制(DYC)的四轮独立电驱动汽车的横向稳定性控制研究 主要内容:利用carsim建模,在simulink中搭建控制器,然后进行联合 实现汽车在高速低附着路
- 永磁同步电机模型预测电流控制Simulink仿真,单矢量控制,带一份报告介绍
- Sim-EKB-Install-2024-12-08
- 跟网型逆变器小干扰稳定性分析与控制策略优化simulink仿真模型和代码 现代逆变技术 阻抗重塑 双锁相环 可附赠参考文献(英文) 和一份与模型完全对应的中文版报告
- 冲压废料收集装置sw18可编辑全套技术资料100%好用.zip
- 【西门子1500吉利(柯马)汽车SICAR项目程序源码】西门子PLC&HMI整套设计资料(源码+注释) 西门子1500 PLC, TP1200触摸屏HMI 非常标准的汽车行业程序(SICAR),修改套
- C++ 基于opencv 4.5 仿halcon 基于形状的模板匹配 ,支持目标缩放以及旋转,支持亚像素精度,源码,支持C#
- 深度学习技术中混沌时间序列预测-基于LSTM、Transformer与CNN的多专家混合模型应用-含详细代码及解释
- 双馈风机惯性控制+下垂控制参与系统一次调频的Matlab Simulink模型,调频结束后转速回复,造成频率二次跌落 系统为三机九节点模型,所有参数已调好且可调,可直接运行,风电渗透率19.4% 风机
- iOS 7.0 ~ 16.7 DeviceSupport.zip
- 软件工程期末复习总结.xmind
- Kriging代理模型 克里金模型 回归预测 根据样本数据建立代理模型,进行预测 Matlab编程
- 高速永磁同步电机的电磁设计 高速永磁电机的体积远小于同等功率的中低速电机,且功率密度高,近年来得到了广泛的发展,在离心压缩机、新能源汽车、航空航天、医疗器械等领域备受青睐 但高速永磁电机的研究主要集
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功