没有合适的资源?快使用搜索试试~ 我知道了~
在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总 1.tf.reduce_sum tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None) 参数: input_tensor:要减少的张量。应该有数字类型。 axis:要减小的尺寸。如果为None(默认),则缩小所有尺寸。必须在范围[-rank(input_tensor), rank(input_tensor))内。 keep_dim
资源推荐
资源详情
资源评论
Tensorflow中的降维函数中的降维函数tf.reduce_*使用总结使用总结
在使用tensorflow时常常会使用到tf.reduce_*这类的函数,在此对一些常见的函数进行汇总
1.tf.reduce_sum
tf.reduce_sum(input_tensor , axis = None , keep_dims = False , name = None , reduction_indices = None)
参数:
input_tensor:要减少的张量。应该有数字类型。
axis:要减小的尺寸。如果为None(默认),则缩小所有尺寸。必须在范围[-rank(input_tensor), rank(input_tensor))内。
keep_dims:如果为true,则保留长度为1的缩小尺寸。
name:操作的名称(可选)。
reduction_indices:axis的废弃的名称。
返回:
该函数返回减少的张量,相当于np.sum
功能:
此函数计算一个张量的各个维度上元素的总和。
说明:
函数中的input_tensor是按照axis中已经给定的维度来减少的;除非 keep_dims 是true,否则张量的秩将在axis的每个条目中
减少1;如果keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的
张量。
举例:
x = tf.constant([[1, 1, 1], [1, 1, 1]])
tf.reduce_sum(x) # 6
tf.reduce_sum(x, 0) # [2, 2, 2] tf.reduce_sum(x, 1) # [3, 3] tf.reduce_sum(x, 1, keep_dims=True) # [[3], [3]] tf.reduce_sum(x, [0, 1]) # 6
2.reduce_min
reduce_min(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
input_tensor:减少的张量。应该有数字类型。
axis:要减小的尺寸。如果为None(默认),则缩小所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
keep_dims:如果为true,则保留长度为1的缩小维度。
name:操作的名称(可选)。
reduction_indices:axis的废弃的名称。
返回:
该函数返回减少的张量,相当于np.min
功能:
tf.reduce_min函数用来计算一个张量的各个维度上元素的最小值。
说明:
同样按照axis给定的维度减少input_tensor。除非 keep_dims 是true,否则张量的秩将在axis的每个条目中减少1。如果
keep_dims为true,则减小的维度将保留为长度1。 如果axis没有条目,则缩小所有维度,并返回具有单个元素的张量。
3.reduce_max
reduce_max(input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None)
参数:
input_tensor:要减少的张量。应该有数字类型。
axis:要减小的尺寸。如果为 None(默认),则减少所有维度。必须在[-rank(input_tensor), rank(input_tensor))范围内。
keep_dims:如果为true,则保留长度为1的减少维度。
name:操作的名称(可选)。
资源评论
weixin_38627826
- 粉丝: 5
- 资源: 939
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 传媒行业景气度好转,AIGC与数据要素推动产业升级及投资前景
- Elasticsearch6.1.1 windows安装版本
- 计算机行业中算力网络的进展:从Dojo架构到算法与硬件协同优化
- 基于C++实现的Linux环境下的实时通讯聊天项目+项目源码+文档说明
- 互联网传媒行业:微软AI+操作系统初见规模,构建AIGC生态壁垒
- 基于JavaWeb+jsp+mysql实现的网上书店系统【源码+数据库】
- 2023年国内外大模型及AIGC商业应用的加速进展
- 使用IMX6ULL ,基于 linux 4.9.88 版本内核编写的USB摄像头驱动应用程序+项目源码+文档说明
- 国内大模型开放带动AIGC商用趋势
- 解决pandas和numpy版本不一致的问题(pandas 包+numpy 包)
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功