没有合适的资源?快使用搜索试试~ 我知道了~
Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署。直接上代码 from keras.models import Model from keras.layers import Dense, Dropout from keras.applications.mobilenet import MobileNet from keras.applications.mobilenet import preprocess_input from keras.preprocessing.image import load_img, img_to_array import ten
资源推荐
资源详情
资源评论
Keras模型转成模型转成tensorflow的的.pb操作操作
Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署。直接上代码
from keras.models import Model
from keras.layers import Dense, Dropout
from keras.applications.mobilenet import MobileNet
from keras.applications.mobilenet import preprocess_input
from keras.preprocessing.image import load_img, img_to_array
import tensorflow as tf
from keras import backend as K
import os
base_model = MobileNet((None, None, 3), alpha=1, include_top=False, pooling='avg', weights=None)
x = Dropout(0.75)(base_model.output)
x = Dense(10, activation='softmax')(x)
model = Model(base_model.input, x)
model.load_weights('mobilenet_weights.h5')
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] input_graph_def =
graph.as_graph_def()
if clear_devices:
for node in input_graph_def.node:
node.device = ""
frozen_graph = convert_variables_to_constants(session, input_graph_def,
output_names, freeze_var_names)
return frozen_graph
output_graph_name = 'NIMA.pb'
output_fld = ''
#K.set_learning_phase(0)
print('input is :', model.input.name)
print ('output is:', model.output.name)
sess = K.get_session()
frozen_graph = freeze_session(K.get_session(), output_names=[model.output.op.name])
from tensorflow.python.framework import graph_io
graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)
print('saved the constant graph (ready for inference) at: ', os.path.join(output_fld, output_graph_name))
补充知识:补充知识:keras h5 model 转换为转换为tflite
在移动端的模型,若选择tensorflow或者keras最基本的就是生成tflite文件,以本文记录一次转换过程。
环境环境
tensorflow 1.12.0
python 3.6.5
h5 model saved by `model.save(‘tf.h5’)`
直接转换直接转换
`tflite_convert --output_file=tf.tflite --keras_model_file=tf.h5`
output
`TypeError: __init__() missing 2 required positional arguments: 'filters' and 'kernel_size'`
先转成先转成pb再转再转tflite
```
资源评论
weixin_38610682
- 粉丝: 6
- 资源: 878
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- Python中的贝叶斯建模和概率编程.zip
- Python中的分布式异步超参数优化.zip
- Python中的分布式进化算法.zip
- Python中的概率时间序列建模.zip
- Python中的模糊字符串匹配.zip
- 基于matlab的信号处理,信号波形恢复,求各阶谐波,数据拟合
- springboot184基于springboot的校园网上店铺的设计与实现.zip
- springboot184基于springboot的校园网上店铺的设计与实现.zip
- Python中的回溯测试交易策略.zip
- Python中的开源低代码机器学习库.zip
- springboot187社区养老服务平台的设计与实现.zip
- springboot187社区养老服务平台的设计与实现.zip
- Python中的设计模式集合.zip
- Python中的投资组合和风险分析.zip
- springboot188基于spring boot的校园商铺管理系统.zip
- springboot188基于spring boot的校园商铺管理系统.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功