没有合适的资源?快使用搜索试试~ 我知道了~
<math> <msup> <mi> e </ mi> <mo> + </ mo> </ msup> <msup> <mi> e </ mi> <中的两个检测器之间的能量相关性(EEC) mo>-</ mo> </ msup> </ math> an灭几乎是在40年前的QCD中以领先顺序进行分析计算的,从1980年代开始以次领先顺序(NLO)进行数值计算。 我们在NLO展示了EEC的第一个分析结果,该结果非常简单,并且有助于对EEC的扰动结构进行分析研究。 我们在以下地区提供EEC的扩展
资源推荐
资源详情
资源评论
Analytical Computation of Energy-Energy Correlation at Next-to-Leading Order in QCD
Lance J. Dixon,
1,*
Ming-xing Luo,
2,†
Vladyslav Shtabovenko,
2,‡
Tong-Zhi Yang,
2,§
and Hua Xing Zhu
2,∥
1
SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA
2
Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang Universi ty, Hangzhou 310027, China
(Received 17 January 2018; published 9 March 2018)
The energy-energy correlation (EEC) between two detectors in e
þ
e
−
annihilation was computed
analytically at leading order in QCD almost 40 years ago, and numerically at next-to-leading order (NLO)
starting in the 1980s. We present the first analytical result for the EEC at NLO, which is remarkably simple,
and facilitates analytical study of the perturbative structure of the EEC. We provide the expansion of the
EEC in the collinear and back-to-back regions through next-to-leading power, information which should
aid resummation in these regions.
DOI: 10.1103/PhysRevLett.120.102001
Introduction.—The energy-energy correlation (EEC) [1]
measures particles detected by two detectors at a fixed
angular separation χ, weighted by the product of the
particles’ energies. The EEC is an infrared-safe characteri-
zation of hadronic energy flow in e
þ
e
−
annihilation. It has
been used for precision tests of quantum chromodynamics
(QCD) and measurement of the strong coupling constant α
s
[2,3]. In perturbative QCD, the EEC is defined by
dΣ
d cos χ
¼
X
i;j
Z
E
i
E
j
Q
2
δð
n
i
·
n
j
− cos χÞdσ; ð1Þ
where i and j run over all the final-state massless partons,
which have four-momenta p
μ
i
and p
μ
j
(including the
case i ¼ j at χ ¼ 0); Q
μ
is the total four-momentum of
the e
þ
e
−
collision and dσ is the differential cross section.
The three-vectors
n
i;j
point along the spatial components
of p
i;j
. The definition Eq. (1) implies the sum rule
1
σ
Z
1
−1
d cos χ
dΣ
d cos χ
¼ 1; ð2Þ
where σ is the total cross section for e
þ
e
−
annihilation to
hadrons.
The leading order (LO) QCD prediction for the EEC has
been available since the 1970s [1]:
1
σ
0
dΣ
d cos χ
¼
α
s
ðμÞ
2π
C
F
3 − 2z
4ð1 − zÞz
5
× ½3zð2 − 3zÞþ2ð2z
2
− 6z þ 3Þlogð1 − zÞ
þ Oðα
2
s
Þ; ð3Þ
where σ
0
is the Born cross section for e
þ
e
−
→ q
¯
q, C
F
is the
quadratic Casimir eigenvalue in the fundamental represen-
tation, and we have introduced z ¼ð1 − cos χÞ/2. The cross
section is strongly peaked at χ ¼ 0 (z ¼ 0) and χ ¼ π
(z ¼ 1), regions that require resummation of logarithms
due to emission of soft and collinear partons. At inter-
mediate angles, higher-order corrections tend to flatten the
distribution.
The EEC was first computed numerically at next-to-
leading order (NLO) in QCD by several groups in the
1980s and 1990s, originally leading to conflicting results.
Different methods were used to handle soft and collinear
singularities from real radiation: phase-space slicing [4–7],
subtraction methods [6,8–14], or hybrid schemes [6,7,15].
Accurate numerical NLO results are available from the
program E
VENT
2, based on dipole subtraction [13,14].
Quite recently, the EEC has been computed at NNLO in
QCD using the CoLoRFulNNLO local subtraction
method [16,17].
In perturbation theory, the EEC is singular in both the
collinear (z → 0) and back-to-back regions (z → 1), as can be
seen explicitly from Eq. (3). The leading-logarithmic collin-
ear behavior can be obtained from the “jet calculus” approach
[18,19], in terms of the anomalous dimension matrix of twist-
two, spin-three operators [11,19]. Resummation of the EEC
in the back-to-back (Sudakov) region has been performed
at next-to-leading-logarithmic (NLL) and NNLL accuracy
[20–22]. Quite recently, a factorization formula for the EEC
has been derived which permits its resummation to N
3
LL
[23]. Possible nonperturbative corrections to the EEC have
also been investigated [24].
Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP
3
.
PHYSICAL REVIEW LETTERS 120, 102001 (2018)
Editors' Suggestion
0031-9007=18=120(10)=102001(6) 102001-1 Published by the American Physical Society
资源评论
weixin_38598703
- 粉丝: 2
- 资源: 905
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 数控车练习题.docx
- 金工实习线上考试线切割课后试题.docx
- 金工实习线上考试数控铣练习题.docx
- 金工实习线上考试铣工练习题.docx
- 铸锻焊练习题及答案.docx
- MSE媒体源拓展的单个和多个视频播放
- 基于艾默生MP1200A4(R)直流驱动装置的轧机主传动应用(HMI)HMI源程序
- 基于艾默生MP1200A4(R)直流驱动装置的轧机主传动应用(HMI)PLC程序.rar
- matlab机械臂关节空间轨迹规划,3-3-3分段多项式插值法,六自由度机械臂,该算法可运用到仿真建模机械臂上实时运动,可视化轨迹,有角度,速度,加速度仿真曲线 也可以有单独角度,速度,加速度仿真曲
- dpkg-离线安装-包含kkfile相关基础包libxinerama1 libcairo2 libcups2 libx11-xcb1
- 系统架构设计师软考思维导图
- 【模型+参考文献】事件触发模型 基于倒立摆matlab仿真 模型为状态空间形式 事件触发机制可自行调节参数
- vmware虚拟机安装教程
- 毕业设计-python在线电影推荐系统(开题报告+源代码).zip
- 基于A*算法的路径规划仿真 A*算法通过包含启发信息的代价函数来搜索最优路径,代价函数f(n)由两部分组成:起点沿着已生成的路径到达当前节点的开销g(n)和当前节点到终点的预估开销h(n), f(n
- 双级式储能模型,可做充放电转以及低电压故障穿越,含有负序抑制模块,可做对称故障与不对称故障
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功