# Predicting Inferior Temporal (IT) multi unit outputs using Deep Neural Nets and their analyses.
Deep neural nets consist of multiple layers to process input images. In a similar way, visual cortex of the primate brain has multiple layers which process visual stimuli incoming from the optic nerve. They are arranged in this order: V1, V2, V3, V4, IT(Inferior Temporal). The IT layer, similar to the final layer of trained DNNs, determine the object in the image.
In this project, comparison was made between 2 of 5 regions in visual cortex of primate brain (V4 & IT) and popular DNN models. Some of the DNN models which were used for the comparison are:
1. HMO
2. HMAX
3. V1like
4. V2like
5. Krizhevsky et al. 2012
6. Zeiler & Fergus 2013
## 1.1) Data acquisition and usage
While the test subject(primate) was being shown test images, neural output was being recorded from its V4 and IT regions. The V4 region had 128 channels through which neural output was collected, whereas the IT region had 168 channels. So IT representation of one image in the primate brain is a 168 dimension vector. 1960 images were shown in total to the primate, so V4 data matrix is 1960x128, whereas IT data matrix is 1960x168. Here is the link to the data:
https://s3.amazonaws.com/cadieu-etal-ploscb2014/PLoSCB2014_data_20141216.zip
*Only multiunit data was used here.*
The same set of images were used to make inferences in the DNN models in order to obtain output from their last fully connected layer. Here is the link to the data:
https://s3.amazonaws.com/cadieu-etal-ploscb2014/PLoSCB2014_models_20150218.zip
**All the data here was acquired from Cadieu et al. 2014**
## 1.2) Keywords used in functions:
Certian functions here will take in as arguments keywords representing data type, DNN model and/or region of visual cortex.
**DNN data**:
* V1 like=*'V1'*
* V2 like=*'V2'*
* HMO=*'HMO'*
* HMAX=*'HMAX'*
* Krizhevsky et al. 2012=*'Kr'*
* Zeiler & Fergus 2013=*'Ze'*
**Visual cortex data**:
* V4 multiunits=*'V4'*
* IT multiunits=*'IT'*
**Data type**:
* Visual cortex=*'NM'*
* DNN=*'DNN'*
## 2) Reliability
Using V4 or a DNN feature matrix, each of the 168 channels of IT were predicted using ridge regression. There are ten train/test splits of 70:30, as specified by the meta of the data matrices. Moreover, optimum alpha of ridge regression is determined through three-fold cross-validation on train set. The formula used for ridge regression is:
<p align="center">
<img src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/eqn1.PNG">
</p>
where:
<img src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/eqn2.PNG">
where **a** is the number of features of the feature matrix.
The ridge regression function is *ridge_r*.
After cross-validation, ridge regression was done again on train set using optimum alpha. After p-hat on test set was calculated, it was split into half and Pearson correlation was calcuated between them and their corresponding p values. The mean Pearson correlation between them was calculated to obtain split-half Spearman correlation using this formula:
<p align="center">
<img src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/eqn3.PNG">
</p>
Explained explainable variance was calculated by multiplying Spearman correlation with 100. To represent individual channel, median value was obtained from ten train test splits. This was done for all the channels. To represent a model, the mean explained explainable variance of the 168 channels was taken. The explained variance was the variance of the 168 Spearman correlations times 100.
The lines of code below calculated such values for HMO, HMAX, V4, Krizhevsky et al. 2012 and Zeiler & Fergus 2013. These results were stored in files with *'_model.mat'* suffix. The number following model keywords is the number of cores used for parallel computing. They can be run from Matlab GUI via these function calls:
```
%Function argument format:
%predicted_label_reliability(label_data_path,'model_keyword',no. of cores)
predicted_label_reliability('PLoSCB2014_data_20141216/PLoSCB2014_data_20141216/NeuralData_IT_multiunits.mat','HMO',16);
predicted_label_reliability('PLoSCB2014_data_20141216/PLoSCB2014_data_20141216/NeuralData_IT_multiunits.mat','HMAX',16);
predicted_label_reliability('PLoSCB2014_data_20141216/PLoSCB2014_data_20141216/NeuralData_IT_multiunits.mat','Kr',16);
predicted_label_reliability('PLoSCB2014_data_20141216/PLoSCB2014_data_20141216/NeuralData_IT_multiunits.mat','Ze',16);
predicted_label_reliability('PLoSCB2014_data_20141216/PLoSCB2014_data_20141216/NeuralData_IT_multiunits.mat','V4',16);
```
Here is a bar chart of the results:
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img1.PNG">
</p>
The error bars represent explained variance, whereas the barplot represents the explained explainable variance. As can be seen, results of Krizhevsky et al. and Zeiler & Fergus are comparable to that of V4.
Here is a scatter plot of 168 points representing the IT multi unit channels, comparing results of V4 and Zeiler & Fergus.
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img2.PNG">
</p>
The Pearson correlation coefficient of the scatter plot is **0.50379**.
## 3) RDM calculation
Seven categories of images were shown to the primate; animals, cars, chairs, faces, fruits, planes, tables. Each category has seven subcategories.
RDM (Representational dissimilarity matrices), in this case, displayed the similarities between IT neural representational vectors of each subcategory. Since there are seven sucategories for each of the seven categories, the RDM matrix calculated here is 49x49. They are calculated using this formula:
<p align="center">
<img src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/eqn4.PNG">
</p>
where *i* and *j* are rows of the feature matrix.
Here are the RDMs displayed:
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img3.PNG">
</p>
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img4.PNG">
</p>
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img5.PNG">
</p>
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img6.PNG">
</p>
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img7.PNG">
</p>
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img8.PNG">
</p>
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img9.PNG">
</p>
<p align="center">
<img width="600" height="500" src="https://github.com/Tapojit/Predicting-IT-cortex-output-using-DNN-and-analysis-MIT-/blob/master/img/img10.PNG">
</p>
Lighter color indicates stronger similarity between two subcategories.
The lines below calculate RDM matrices, create heat maps out of them and save them as png images.
```
RDM_calc('NM','IT');%For IT cortex
RDM_calc('NM','V4');%For V4 cortex
```
The RDMS calculated with functions above will be saved with *'_Neural Representations.png'* suffix.
```
RDM_calc('DNN','HMO');%F
没有合适的资源?快使用搜索试试~ 我知道了~
matlab做信效度分析代码-Predicting-IT-cortex-output-using-DNN-and-analysi...
共59个文件
png:26个
m:19个
m~:8个
5星 · 超过95%的资源 需积分: 48 12 下载量 179 浏览量
2021-05-27
21:17:40
上传
评论
收藏 2.45MB ZIP 举报
温馨提示
matlab做信效度分析代码使用深度神经网络及其分析预测下颞(IT)多单元输出。 深度神经网络由多层组成,以处理输入图像。 以类似的方式,灵长类动物大脑的视觉皮层具有多个层,这些层处理从视神经传入的视觉刺激。 它们按以下顺序排列:V1,V2,V3,V4,IT(下颞)。 IT层类似于经过训练的DNN的最后一层,确定图像中的对象。 在该项目中,比较了灵长类动物大脑的视觉皮层(V4和IT)的5个区域中的2个区域与流行的DNN模型之间的比较。 用于比较的一些DNN模型是: HMO HMAX 像V1 像V2 克里热夫斯基等。 2012年 Zeiler&Fergus 2013 1.1)数据获取和使用 在显示测试对象(灵长类动物)测试图像的同时,从其V4和IT区域记录神经输出。 V4区域具有128个通道,通过该通道收集神经输出,而IT区域具有168个通道。 因此,灵长类动物大脑中一幅图像的IT表示是一个168维向量。 总共向灵长类动物显示了1960张图像,因此V4数据矩阵为1960x128,而IT数据矩阵为1960x168。 这是数据的链接: 这里仅使用多单位数据。 为了从DNN模型的最后一个完全连
资源详情
资源评论
资源推荐
收起资源包目录
Predicting-IT-cortex-output-using-DNN-and-analysis-MIT--master.zip (59个子文件)
Predicting-IT-cortex-output-using-DNN-and-analysis-MIT--master
reliability_test.m 6KB
HMO_Model Representations + IT-fit.png 52KB
predicted_label_reiliability.m~ 6KB
Comprehensive reliability analysis
Cadieu_RCV.m~ 6KB
live_script.mlx 6KB
Ridge_RG.m 2KB
Cadieu_RCV.m 6KB
Explained_variance_LM.m 742B
Ridge_RG.m~ 2KB
MSE_LM.m 558B
k_fold_cv.m 5KB
README.md 3KB
RMSE_LM.m 625B
Explained_variance_LM.m~ 688B
Krizhevsky et al. 2012_Model Representations.png 50KB
crossvalidation.m~ 2KB
predicted_label_reiliability.m 6KB
Cadieu_live.mlx 551KB
img
img6.PNG 146KB
img10.PNG 124KB
eqn3.PNG 5KB
img1.PNG 73KB
img5.PNG 119KB
eqn1.PNG 3KB
img8.PNG 130KB
eqn6.PNG 8KB
img2.PNG 112KB
img9.PNG 124KB
img4.PNG 126KB
eqn5.PNG 4KB
eqn2.PNG 2KB
img7.PNG 146KB
eqn4.PNG 12KB
img3.PNG 117KB
crossvalidation.m 3KB
reliability_test.m~ 6KB
ridge_regression.m 3KB
Cadieu_live.pdf 385KB
image_database.m 2KB
reg_ridge.m 2KB
IT_predictor.m 3KB
bar_plot.m 1022B
ridge_r.m 2KB
k_fold_cv.m 5KB
RDM_calc.m 1KB
matrix_summer.m 2KB
Krizhevsky et al. 2012_Model Representations + IT-fit.png 49KB
HMO_Model Representations.png 45KB
README.md 10KB
IT_Neural Representations.png 44KB
slurm 340B
Zeiler & Fergus 2013_Model Representations.png 50KB
ridge_regression.m~ 3KB
transfer_learnng.m 523B
k_fold_cv.m~ 6KB
Zeiler & Fergus 2013_Model Representations + IT-fit.png 49KB
lineplot.png 37KB
V4_Neural Representations.png 46KB
barplot.png 28KB
共 59 条
- 1
weixin_38590567
- 粉丝: 2
- 资源: 932
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功
评论10