针对传统贝叶斯优化算法进化效率低及收敛速度慢的情况,提出一种新型混合贝叶斯优化算法.该算法利用适应度遗传及个体的局部搜索方法,使种群个体趋向于全局最优解,提高了进化效率.为提高贝叶斯优化算法中贝叶斯网络结构学习的效率,提出一种爬山法和模式蚁群算法相结合的网络结构学习方法,同时对新型贝叶斯优化算法的收敛性进行了分析.利用典型的函数对提出的新型混合贝叶斯优化算法进行了仿真分析,证明了所提出的方法可以有效地加快算法的收敛速度和收敛精度.将该算法应用于目标分配问题中,仿真证明了所提算法的有效性和优越性.