目前对高维数据进行挖掘的方法大多是基于数学理论而非可视化的直觉。为便于直观分析和评价高维数据,提出引入随机森林(RF)方法对高维数据进行数据可视化。首先,采用RF进行有监督学习得到样本间的相似度度量,并采用主坐标分析法对其进行降维,将高维数据的关系信息变换到低维空间;然后,在低维空间中采用散点图进行可视化。在高维基因数据集上实验结果表明,基于RF有监督降维的可视化能够较好地展现高维数据的类分布规律,且优于传统的无监督降维后的可视化效果。
评论星级较低,若资源使用遇到问题可联系上传者,3个工作日内问题未解决可申请退款~