第 39 卷 第 12 期 自 动 化 学 报 Vol. 39, No. 12
2013 年 12 月 ACTA AUTOMATICA SINICA December, 2013
基于双模态自适应小波粒子群的永磁同步电机
多参数识别与温度监测方法
刘朝华
1
周少武
1
刘 侃
2
章 兢
3
摘 要 提出了一种双模态自适应小波粒子群 (Binary-mo dal adaptive wavelet particle swarm optimization, BAWPSO) 的
永磁同步电机 (Permanent magnet synchronous motor, PMSM) 多参数识别与温度监测方法. 为了提高算法动态寻优性能,
群体被划分为正向学习和反向学习两种模态; 对处于不同模态的粒子分别采用正向学习策略与反向学习策略协同求解, 扩大
了解的搜索空间; 同时对粒子个体极值采用自适应小波算子增强学习以提高收敛精度. 永磁同步电机参数辨识结果表明所提
方法能够有效地辨识电机电阻, dq 轴电感与转子磁链等参数, 且能有效追踪系统参数变化值. 在辨识出电机定子绕阻值后, 根
据金属阻值与温度之间的线性原理间接计算定转子温度, 从而实现永磁同步电机系统温度在线监测.
关键词 粒子群, 永磁同步电机, 参数辨识, 温度监测, 自适应
引用格式 刘朝华, 周少武, 刘侃, 章兢. 基于双模态自适应小波粒子群的永磁同步电机多参数识别与温度监测方法. 自动化
学报, 2013, 39(12): 2121−2130
DOI 10.3724/SP.J.1004.2013.02121
Permanent Magnet Synchronous Motor Multiple Parameter Identification and
Temperature Monitoring Based on Binary-modal Adaptive Wavelet Particle
Swarm Optimization
LIU Zhao-Hua
1
ZHOU Shao-Wu
1
LIU Kan
2
ZHANG Jing
3
Abstract A novel parameter identification and temperature monitoring approach to permanent magnet synchronous
motor (PMSM) based on binary-modal adaptive wavelet particle swarm optimization (BAWPSO) is proposed. In order
to enhance the dynamic optimal performance of the swarm, the population is split into two states involving positive
learning state and opposition learning state during the search process. The positive learning strategy and the opposition
learning strategy are applied to different state swarms respectively to exhibit a wide range exploration. An adaptive
wavelet learning mechanism is employed for accelerating the convergence accuracy of pbest. The experimental results
show that the proposed method can estimate the machine dq-axis inductances, stator winding resistance and rotor flux
linkage effectively, as well as track the varied parameter. Once the stator winding resistance is identified, the temperature
can be calculated according to the principle that the metal resistance linearly depends on its temperature. The proposed
metho d can realize on-line monitoring of the permanent magnet synchronous motor temperature effectively.
Key words Particle swarm optimization (PSO), permanent magnet synchronous motor (PMSM), parameter identifica-
tion, temperature monitoring, adaptive
Citation Liu Zhao-Hua, Zhou Shao-Wu, Liu Kan, Zhang Jing. Permanent magnet synchronous motor multiple parame-
ter identification and temperature monitoring based on binary-modal adaptive wavelet particle swarm optimization. Acta
Automatica Sinica, 2013, 39(12): 2121−2130
收稿日期 2012-09-26 录用日期 2013-04-15
Manuscript received September 26, 2012; accepted April 15,
2013
国 家 科 技 支 撑 计 划 (2012BAH09B02), 国 家 自 然 科 学 基 金
(61174140, 61203309), 教育部高校博士点基金 (20110161110035),
中 国 博 士 后 科 学 基 金 项 目 (2013M540628), 湖 南 省 自 然 科 学 基 金
(13JJ8014, 14JJ3107) 资助
Supported by Key Projects in the National Science and
Technology Pillar Program (2012BAH09B02), National Natu-
ral Science Foundation of China (61174140, 61203309), Do c-
toral Fund of Ministry of Education of China (20110161110035),
China Postdoctoral Science Foundation Funded Project
(2013M540628), and National Natural Science Foundation of
Hunan Province (13JJ8014, 14JJ3107)
本文责任编委 方海涛
永 磁 同 步 电 机 (Permanent magnet syn-
chronous motor, PMSM) 具有响应速度快、控制
性能好、 高密度功率等优点而被广泛地应用于新能
Recommended by Associate Editor FANG Hai-Tao
1. 湖南科技大学信息与电气工程学院 湘潭 411201 中国 2. 谢菲尔
德大学电子与电气工程系 谢菲尔德 S13JD 英国 3. 湖南大学电气与
信息工程学院 长沙 410082 中国
1. School of Information and Electrical Engineering, Hunan
University of Science and Technology, Xiangtan 411201, China
2. Department of Electronic and Electrical Engineering, Univer-
sity of Sheffield, Sheffield S13JD, UK 3. College of Electri-
cal and Information Engineering, Hunan University, Changsha
410082, China