没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Sklearn简介 Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression)、降维(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法。当我们面临机器学习问题时,便可根据下图来选择相应的方法。 Sklearn具有以下特点: 简单高效的数据挖掘和数据分析工具 让每个人能够在复杂环境中重复使用 建立NumPy、Scipy、MatPlotLib之上 代码如下所示: import xlrd import matplotlib.pyplot
资源推荐
资源详情
资源评论
python sklearn库实现简单逻辑回归的实例代码库实现简单逻辑回归的实例代码
Sklearn简介简介
Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression)、降维
(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法。当我们面临机器学习问题时,便可根据下图来选
择相应的方法。
Sklearn具有以下特点:
简单高效的数据挖掘和数据分析工具
让每个人能够在复杂环境中重复使用
建立NumPy、Scipy、MatPlotLib之上
代码如下所示:
import xlrd
import matplotlib.pyplot as plt
import numpy as np
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
data = xlrd.open_workbook('gua.xlsx')
sheet = data.sheet_by_index(0)
Density = sheet.col_values(6)
Sugar = sheet.col_values(7)
Res = sheet.col_values(8)
# 读取原始数据
X = np.array([Density, Sugar])
# y的尺寸为(17,)
y = np.array(Res)
X = X.reshape(17,2)
# 绘制分类数据
f1 = plt.figure(1)
plt.title('watermelon_3a')
plt.xlabel('density')
plt.ylabel('ratio_sugar')
# 绘制散点图(x轴为密度,y轴为含糖率)
plt.scatter(X[y == 0,0], X[y == 0,1], marker = 'o', color = 'k', s=100, label = 'bad')
plt.scatter(X[y == 1,0], X[y == 1,1], marker = 'o', color = 'g', s=100, label = 'good')
plt.legend(loc = 'upper right')
plt.show()
# 从原始数据中选取一半数据进行训练,另一半数据进行测试
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.5, random_state=0)
# 逻辑回归模型
log_model = LogisticRegression()
# 训练逻辑回归模型
log_model.fit(X_train, y_train)
# 预测y的值
y_pred = log_model.predict(X_test)
# 查看测试结果
print(metrics.confusion_matrix(y_test, y_pred))
print(metrics.classification_report(y_test, y_pred))
总结总结
以上所述是小编给大家介绍的python sklearn库实现简单逻辑回归的实例代码,希望对大家有所帮助,如果大家有任何疑问请给
我留言,小编会及时回复大家的。在此也非常感谢大家对软件开发网网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
您可能感兴趣的文章您可能感兴趣的文章:python实现逻辑回归的方法示例python编写Logistic逻辑回归Python实现的逻辑回归算法示例【附测试
csv文件下载】python代码实现逻辑回归logistic原理python机器学习理论与实战(四)逻辑回归Python tensorflow实现mnist手
写数字识别示例【非卷积与卷积实现】Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例详解python实现识
别手写MNIST数字集的程序python读取二进制mnist实例详解python MNIST手写识别数据调用API的方法Python利用逻辑回归
模型解决MNIST手写数字识别问题详解
资源评论
- df5954204692023-07-25作者通过示例清晰地说明了逻辑回归的原理和应用,对新手很友好。
- 虚伪的小白2023-07-25代码注释详细,让读者更好地理解每一个步骤的用途。
- 恽磊2023-07-25这个文件提供了一个清晰简洁的实例代码,很容易理解。
- 135720250902023-07-25这个文件给出了实际应用中常见的数据预处理步骤,很实用。
- 开眼旅行精选2023-07-25作者对逻辑回归的实现进行了详细解释,让人轻松上手。
weixin_38555350
- 粉丝: 2
- 资源: 931
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功