基于基于AT89S52 和和K9F6408U0A 的语音数字系统设计的语音数字系统设计
该系统以单片机AT89S52 为控制器, 采用键盘和LCD 作为人机界面,ADC0809 采集音频信号, 扩展8 MB 闪
速存储器K9F6408U0A作为数字化音频信号的存储器,通过软件滤波滤除噪音;采用PWM 产生声音的原理,使
存储在Flash 中的音频数据控制PWM 每个波形的占空比,通过低通滤波器将声音从PWM 的脉冲中分离,并驱
动扬声器。
数据采集技术涉及领域广,采集信号的动态范围宽,处理数据量大,对系统实时性能要求高。以数字信号的形式对信号进行处理,
具有处理速度快、灵活、精确、抗干扰能力强、体积小及可靠性高等优点,满足了对信号快速、精确、实时处理及控制的要
求。本设计利用了数字电路的这些优点,对传统的模拟录音电路进行了改进,以较低的成本使性能得到了提高。
1 方案论证
本设计以数字化信号的形式对音频信号进行处理,有以下3 种方案可供选择:
1)直接利用语音芯片进行语音录放。Winbond公司的ISD系列语音芯片采用了Chip-Corded 专利技术, 声音无需A/D转换和压
缩就可直接存储,不存在A/D 转换误差,在一个记录位(BIT)可存储多达250 级声音信号,相当于通常A/D 技术记录容量的8
倍。片内集成了晶体振荡器、麦克风前置放大器、自动增益控制、抗混叠滤波器、平滑滤波器、声音功率放大器等,只需很少
的外围器件,就可构成一个完整的声音录放系统。
2)利用DSP 对采样信号进行处理。DSP 是专门为快速实现各种信号处理算法而设计的、具有特殊结构的微处理器,其处理
速度远远超过一般的CPU。
3)利用AT89S52 作为系统主控芯片,利用ADC0809 对音频信号进行采集和A/D 转换,将转换得到的数字化音频信号存储到
扩展的数据存储器中,利用软件对信号进行数字滤波,最后通过单片机输出PWM 信号来完成放音。
从经济和技术等因素考虑对上述3 种方案进行比较:直接利用语音芯片可以减少很多外围电路, 电路设计方便,但语音芯片
使用不够灵活。DSP 具有强大的数字信号处理功能,使用灵活,但该芯片价格较高,不适于一般的应用。方案3)中器件均为
常用芯片,易于获取,且价位不高。因此,方案3)为最佳设计方案。
2 硬件设计
图1 为系统硬件结构图。音频信号通过拾音器将声音信号转换为可以处理的电信号,前置放大电路用来对拾音器的输出进行放
大, 与A/D 转换电路匹配,A/D 转换电路实现对模拟信号的编码。微处理器是系统的核心,它用来对数字化音频信号进行处
理和存储,协调系统各个部分的工作,输出PWM 波来驱动输出电路。
图1 系统硬件结构框图。
2.1 单片机
单片机是系统的控制中心, 它主要实现以下的功能:控制LCD 显示语音信号的相关信息, 控制按键识别和功能选择; 控制音
频数据的采集并存储在Flash ROM, 放音时读取Flash ROM 中数据,用软件方法产生PWM 脉冲信号,实现语音的存储和回
放。
2.2 声音信号拾取、放大电路
声音信号拾取电路就是将声音信号转换为电信号的装置。本设计选用麦克风,它是一种声敏电阻,其阻值随外界声音信号的变
化而变化,将其串联在电路中,电阻的变化形成电压的变化,经过电容通交隔直,就得到了表征声音信号特征的电信号。
然而由于声音信号拾取电路输出电压的幅值很小,为20~25 mV,若将该信号直接与A/D 转换电路相连,由于A/D转换器最小
分辨电压也为毫伏数量级, 会产生很大的误差,为了保证系统的精度,在和A/D 转换电路相连之前,需串联一个放大电路,
考虑到声音信号拾取电路的输出信号很小,放大电路的失真度和噪声对系统的精度影响最大,故将其设计为抗共模干扰强的并
联负反馈放大电路, 由于音频信号的频宽较大,故选用宽频带,低输出阻抗的双运放NE5532。
2.3 A/D 转换电路
A/D 转换电路由A/D 转换器ADC0809 与系统处理器AT89S52 组成, 主要实现对放大后的声音信号进行采样。
ADC0809 与AT89S52 的电路连接如图2 所示。