没有合适的资源?快使用搜索试试~ 我知道了~
Keras中 ImageDataGenerator函数的参数用法
1 下载量 25 浏览量
2021-01-19
23:55:15
上传
评论
收藏 183KB PDF 举报
温馨提示
一、Keras ImageDataGenerator参数 from keras.preprocessing.image import ImageDataGenerator keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization = False, samplewise_std_normalization = False, zca_whitening = False, rotatio
资源推荐
资源详情
资源评论
Keras中中 ImageDataGenerator函数的参数用法函数的参数用法
一、一、Keras ImageDataGenerator参数参数
from keras.preprocessing.image import ImageDataGenerator
keras.preprocessing.image.ImageDataGenerator(featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization = False,
samplewise_std_normalization = False,
zca_whitening = False,
rotation_range = 0.,
width_shift_range = 0.,
height_shift_range = 0.,
shear_range = 0.,
zoom_range = 0.,
channel_shift_range = 0.,
fill_mode = 'nearest',
cval = 0.0,
horizontal_flip = False,
vertical_flip = False,
rescale = None,
preprocessing_function = None,
data_format = K.image_data_format(),
)
featurewise_center:布尔值,使输入数据集去中心化(均值为0), 按feature执行。
samplewise_center:布尔值,使输入数据的每个样本均值为0。
featurewise_std_normalization:布尔值,将输入除以数据集的标准差以完成标准化, 按feature执行。
samplewise_std_normalization:布尔值,将输入的每个样本除以其自身的标准差。
zca_whitening:布尔值,对输入数据施加ZCA白化。
rotation_range:整数,数据提升时图片随机转动的角度。随机选择图片的角度,是一个0~180的度数,取值为0~180。 在 [0,
指定角度] 范围内进行随机角度旋转。
width_shift_range:浮点数,图片宽度的某个比例,数据提升时图片随机水平偏移的幅度。
height_shift_range:浮点数,图片高度的某个比例,数据提升时图片随机竖直偏移的幅度。 height_shift_range和
width_shift_range是用来指定水平和竖直方向随机移动的程度,这是两个0~1之间的比例。
shear_range:浮点数,剪切强度(逆时针方向的剪切变换角度)。是用来进行剪切变换的程度。
zoom_range:浮点数或形如[lower,upper]的列表,随机缩放的幅度,若为浮点数,则相当于[lower,upper] = [1 – zoom_range,
1+zoom_range]。用来进行随机的放大。(后面的例子与此处说法有矛盾,感觉后边是对的?)
channel_shift_range:浮点数,随机通道偏移的幅度。
fill_mode:‘constant’,‘nearest’,‘reflect’或‘wrap’之一,当进行变换时超出边界的点将根据本参数给定的方法进行处理
cval:浮点数或整数,当fill_mode=constant时,指定要向超出边界的点填充的值。
horizontal_flip:布尔值,进行随机水平翻转。随机的对图片进行水平翻转,这个参数适用于水平翻转不影响图片语义的时
候。
vertical_flip:布尔值,进行随机竖直翻转。
rescale: 值将在执行其他处理前乘到整个图像上,我们的图像在RGB通道都是0~255的整数,这样的操作可能使图像的值过高
或过低,所以我们将这个值定为0~1之间的数。
preprocessing_function: 将被应用于每个输入的函数。该函数将在任何其他修改之前运行。该函数接受一个参数,为一张图片
(秩为3的numpy array),并且输出一个具有相同shape的numpy array
data_format:字符串,“channel_first”或“channel_last”之一,代表图像的通道维的位置。该参数是Keras 1.x中的
image_dim_ordering,“channel_last”对应原本的“tf”,“channel_first”对应原本的“th”。以128×128的RGB图像为
例,“channel_first”应将数据组织为(3,128,128),而“channel_last”应将数据组织为(128,128,3)。该参数的默认值是
~/.keras/keras.json中设置的值,若从未设置过,则为“channel_last”。
二、二、Data Aumentation(数据扩充)说明(数据扩充)说明
Data Aumentation(数据扩充)指的是在使用以下或者其他方法增加数据输入量。这里,我们特指图像数据。
资源评论
weixin_38526780
- 粉丝: 4
- 资源: 994
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功