没有合适的资源?快使用搜索试试~ 我知道了~
全光纤混合光子-等离激元电路:将纳米线等离激元与光纤集成
需积分: 5 0 下载量 81 浏览量
2021-05-01
06:05:47
上传
评论
收藏 3.26MB PDF 举报
温馨提示
我们通过将Ag纳米线与光纤集成来演示全光纤混合光子-等离激元电路。 依靠近场耦合,我们可以在基于纤维的纳米线等离子体探测器中实现高达92%的光子-等离子体转换效率。 在光通信频带附近,我们组装了全光纤谐振器和Mach-Zehnder干涉仪(MZI),它们的Q因子分别为6 x 106和消光比高达30 dB。 使用MZI,我们演示了具有高灵敏度和低光功率的光纤兼容等离子体传感。 (C)2013年美国眼镜学会
资源推荐
资源详情
资源评论
All-fiber hybrid photon-plasmon circuits:
integrating nanowire plasmonics with fiber
optics
Xiyuan Li,
1
Wei Li,
1
Xin Guo,
1,*
Jingyi Lou,
2
and Limin Tong
1,3
1
State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang
University, Hangzhou 310027, China
2
College of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China
3
phytong@zju.edu.cn
*
guoxin@zju.edu.cn
Abstract: We demonstrate all-fiber hybrid photon-plasmon circuits by
integrating Ag nanowires with optical fibers. Relying on near-field
coupling, we realize a photon-to-plasmon conversion efficiency up to 92%
in a fiber-based nanowire plasmonic probe. Around optical communication
band, we assemble an all-fiber resonator and a Mach-Zehnder
interferometer (MZI) with Q-factor of 6 × 10
6
and extinction ratio up to 30
dB, respectively. Using the MZI, we demonstrate fiber-compatible
plasmonic sensing with high sensitivity and low optical power.
©2013 Optical Society of America
OCIS codes: (250.5403) Plasmonics; (060.2310) Fiber optics; (230.0230) Optical devices;
(130.6010) Sensors.
References and links
1. M. Yamane and Y. Asahara, Glasses for Photonics (Cambridge Univ. Press, 2000).
2. H. Murata, Handbook of Optical Fibers and Cables 2nd ed. (Marcel Dekker, 1996).
3. D. K. Mynbaev and L. L. Scheiner, Fiber-Optic Communications Technology (Prentice Hall, 2001).
4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950),
824–830 (2003).
5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007).
6. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
7. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91
(2010).
8. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–
193 (2006).
9. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens.
Actuators B Chem. 12(3), 213–220 (1993).
10. C. Ronot-Trioli, A. Trouillet, C. Veillas, and H. Gagnaire, “Monochromatic excitation of surface plasmon
resonance in an optical-fibre refractive-index sensor,” Sens. Actuators A Phys. 54(1–3), 589–593 (1996).
11. R. Slavik, J. Homola, J. Ctyroky, and E. Brynda, “Novel spectral fiber optic sensor based on surface plasmon
resonance,” Sens. Actuators B Chem. 74(1–3), 106–111 (2001).
12. X. Guo, M. Qiu, J. M. Bao, B. J. Wiley, Q. Yang, X. N. Zhang, Y. G. Ma, H. K. Yu, and L. M. Tong, “Direct
coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.
9(12), 4515–4519 (2009).
13. C. H. Dong, C. L. Zou, X. F. Ren, G. C. Guo, and F. W. Sun, “In-line high efficient fiber polarizer based on
surface plasmon,” Appl. Phys. Lett. 100(4), 041104 (2012).
14. A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-optic sensors based on surface plasmon resonance: a
comprehensive review,” IEEE Sens. J. 7(8), 1118–1129 (2007).
15. N. Liu, Z. P. Li, and H. X. Xu, “Polarization-dependent study on propagating surface plasmons in silver
nanowires launched by a near-field scanning optical fiber tip,” Small 8(17), 2641–2646 (2012).
16. W. Ding, S. R. Andrews, and S. A. Maier, “Internal excitation and superfocusing of surface plasmon polaritons
on a silver-coated optical fiber tip,” Phys. Rev. A 75(6), 063822 (2007).
17. N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, “Excitation and superfocusing of surface
plasmon polaritons on a silver-coated optical fiber tip,” Opt. Commun. 253(1–3), 118–124 (2005).
18. Y. B. Lin, J. P. Guo, and R. G. Lindquist, “Demonstration of an ultra-wideband optical fiber inline polarizer
with metal nano-grid on the fiber tip,” Opt. Express 17(20), 17849–17854 (2009),
http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-20-17849.
#189134 - $15.00 USD
Received 19 Apr 2013; revised 13 Jun 2013; accepted 17 Jun 2013; published 24 Jun 2013
(C) 2013 OSA
1 July 2013 | Vol. 21, No. 13 | DOI:10.1364/OE.21.015698 | OPTICS EXPRESS 15698
19. Q. Zhang, C. Y. Xue, Y. L. Yuan, J. Y. Lee, D. Sun, and J. J. Xiong, “Fiber surface modification technology for
fiber-optic localized surface plasmon resonance biosensors,” Sensors (Basel) 12(3), 2729–2741 (2012).
20. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in
nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
21. R. X. Yan, P. Pausauskie, J. X. Huang, and P. D. Yang, “Direct photonic-plasmonic coupling and routing in
single nanowires,” Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009).
22. C. H. Dong, X. F. Ren, R. Yang, J. Y. Duan, J. G. Guan, G. C. Guo, and G. P. Guo, “Coupling of light from an
optical fiber taper into silver nanowires,” Appl. Phys. Lett. 95(22), 221109 (2009).
23. Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, “Uniform silver nanowires synthesis by
reducing AgNO
3
with Ethylene Glycol in the presence of seeds and Poly (Vinyl Pyrrolidone),” Chem. Mater.
14(11), 4736–4745 (2002).
24. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur,
“Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
25. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn,
“Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett. 95(25), 257403 (2005).
26. Y. G. Ma, X. Y. Li, H. K. Yu, L. M. Tong, Y. Gu, and Q. H. Gong, “Direct measurement of propagation losses
in silver nanowires,” Opt. Lett. 35(8), 1160–1162 (2010), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-
35-8-1160.
27. S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat.
Photonics 3(7), 388–394 (2009).
28. R. X. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. D. Yang, “Nanowire-based single-cell
endoscopy,” Nat. Nanotechnol. 7(3), 191–196 (2011).
29. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. N. Xia, E. R. Dufresne, and M. A. Reed, “Observation of
plasmon propagation, redirection, and fan-out in silver nanowires,” Nano Lett. 6(8), 1822–1826 (2006).
30. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson,
“Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–
895 (2010).
31. Q. J. Lu, D. R. Chen, G. Z. Wu, B. J. Peng, and J. C. Xu, “A hybrid plasmonic microresonator with high quality
factor and small mode volume,” J. Opt. 14(12), 125503 (2012).
32. Y. F. Xiao, B. B. Li, X. Jiang, X. Y. Hu, Y. Li, and Q. H. Gong, “High quality factor, small mode volume, ring-
type plasmonic microresonator on a silver chip,” J. Phys. B 43(3), 035402 (2010).
33. N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-
Zehnder Multi/Demultiplexer family with channel spacing of 0.01-250 nm,” IEEE J. Sel. Areas Comm. 8(6),
1120–1127 (1990).
34. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic Publishers, 2000).
35. B. J. Murray, E. C. Walter, and R. M. Penner, “Amine vapor sensing with silver mesowires,” Nano Lett. 4(4),
665–670 (2004).
36. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9),
2757–2761 (2008).
37. R. Kirchain and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics 1(6), 303–305 (2007).
38. A. Alduino and M. Paniccia, “Interconnects: Wiring electronics with light,” Nat. Photonics 1(3), 153–155
(2007).
39. X. Guo, Y. G. Ma, Y. P. Wang, and L. M. Tong, “Nanowire plasmonic waveguides, circuits and devices,” Laser
& Photon. Rev. 2013, doi: 10.1002/lpor.201200067.
40. H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, “Cascaded logic gates in nanophotonic plasmon
networks,” Nat Commun 2, 387 (2011).
41. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics
1(
11), 641–648
(
2007).
42. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 78(12), 3859–3874 (2006).
43. N. P. de Leon, M. D. Lukin, and H. Park, “Quantum plasmonic circuits,” IEEE J. Sel. Top. Quantum Electron.
18(6), 1781–1791 (2012).
1. Introduction
In the past 40 years, optical fibers have been very successful in handling light linearly or
nonlinearly for wide applications including optical communication, sensing and power
delivery [1–3]. While the conventional fiber-optic technology have been well-established,
employing new structures or mechanisms for manipulating light has been the driving force to
push forward the frontier of fiber optics, among which incorporating fiber optics with
plasmonics is one of the current trends for exploring new opportunities. Surface plasmon
polaritons (SPPs), which are electromagnetic waves coupled to collective oscillations of
electrons on the surface of a conductor [4,5], have been extensively studied recently. By
coupling light to free electron oscillations in the metal, SPPs can be guided along metal-
dielectric interfaces beyond the diffraction limit and confining light to scales less than λ/10
[6,7], as well as offer the possibility of bridging the gap between the nanoscale electronics
#189134 - $15.00 USD
Received 19 Apr 2013; revised 13 Jun 2013; accepted 17 Jun 2013; published 24 Jun 2013
(C) 2013 OSA
1 July 2013 | Vol. 21, No. 13 | DOI:10.1364/OE.21.015698 | OPTICS EXPRESS 15699
剩余7页未读,继续阅读
资源评论
weixin_38506835
- 粉丝: 5
- 资源: 958
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功