![](https://img.shields.io/badge/Language-python-brightgreen.svg)
# DDPM for unsupervised OCT denoising
### [SPIE 2022] Unsupervised denoising of retinal OCT with diffusion probabilistic model
---
- [x] The paper is available [here](https://arxiv.org/pdf/2201.11760.pdf)
### Introduction
Optical coherence tomography (OCT) is a prevalent non-invasive imaging method which provides high resolution volumetric visualization of retina. However, its inherent defect, the speckle noise, can seriously deteriorate the tissue visibility in OCT. Deep learning based approaches have been widely used for image restoration, but most of them require supervision from a noise-free reference image which is inaccessible for medical images. In this study, we present a diffusion probabilistic
model that is fully unsupervised to learn from noise instead of signal. A diffusion process is defined by adding a sequence of Gaussian noise to self-fused OCT b-scans. Then the reverse process of diffusion, modeled by a Markov chain, provides an adjustable level of denoising. Our experiment results demonstrate that our method
can significantly improve the image quality with a simple working pipeline and a small amount of training data.
The overall pipeline of the work is shown as following:
<p align="center">
<img src="/assets/workflow.png" alt="drawing" width="650"/>
</p>
We first leverage the self-fusion method as a pre-processing step to create a relatively high SNR image as it is shown in **a.self-fusion**. Then we gradually add small Gaussian noise to the self-fused image as the diffusion process. The denoising process is realized by a deep model that learns the pattern of the noise. Detailed derivation is available in the paper.
>- The number of denoising step t is an extra hyperparameter. Then the model can denoise image with different noise level by adjusting t. In our experiment we show that the input with lower SNR needs more steps to reach the optimal visual effect.
### Self-Fusion
Inherited from the joint label fusion, self-fusion regards b-scans in a small vicinity of a given target b-scan as ‘atlases’ because of their structural similarity. After registering the neighbors to the target b-scan, a pixel-wise weighted average of these ‘atlases’ will result in an image with high signal-to-noise ratio (SNR). The weight of each pixel is determined by a patch-wise similarity metric. The source paper is [**Self-fusion for OCT noise reduction**](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643350/), and a learning-based version is [**Retinal OCT Denoising with Pseudo-Multimodal Fusion Network**](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241435/). The label fusion software is availble under /label-fusion/, and an example bash file is provided (self_fusion.sh).
### Diffusion Probabilitic Model
The code is arranged as following:
basic function and normalizing tools : util.py
pre-processing and data loader: OCT_dataloader.py
Gaussian diffusion and denoising process: DDPM_GuassianDiffusion.py
network architecture: DDPM_Net.py
training: DDPM_main.py
testing: DDPM_test.py
### Checkpoints
In the ckpts folder, the model used to denoise the retina OCT is provided. Note that the intensity should be normalized to range [1,3] for this model.
Please cite our work:
```
@inproceedings{hu2022unsupervised,
title={Unsupervised denoising of retinal OCT with diffusion probabilistic model},
author={Hu, Dewei and Tao, Yuankai K and Oguz, Ipek},
booktitle={Medical Imaging 2022: Image Processing},
volume={12032},
pages={25--34},
year={2022},
organization={SPIE}
}
```
AI拉呱
- 粉丝: 2896
- 资源: 5551
最新资源
- 洞见研报江阴振宏重型锻造(锻件及粉末冶金制品制造商,振宏重工(江苏)股份有限公司)创投信息
- 大学生在线租房平台--论文pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 垃圾分类网站-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 大学生就业服务平台--论文pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 基于java的美食信息推荐系统的设计与实现pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 洞见研报科沃斯(家庭服务机器人研发与生产商,科沃斯机器人股份有限公司)创投信息
- 大学生创新创业项目管理系统--论文pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 大学生平时成绩量化管理系统pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 工资信息管理系统--论文pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 当代中国获奖的知名作家信息管理系统的设计与实现pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 房屋租赁管理系统boot--论文pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 果蔬作物疾病防治系统pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 爱心商城系统pf-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 商务安全邮箱邮件收发-springboot毕业项目,适合计算机毕-设、实训项目、大作业学习.zip
- 洞见研报卢米蓝(新型OLED材料研发生产商,宁波卢米蓝新材料有限公司)创投信息
- 基于python后端开发框架
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈