![](https://img.shields.io/badge/Language-python-brightgreen.svg)
# DDPM for unsupervised OCT denoising
### [SPIE 2022] Unsupervised denoising of retinal OCT with diffusion probabilistic model
---
- [x] The paper is available [here](https://arxiv.org/pdf/2201.11760.pdf)
### Introduction
Optical coherence tomography (OCT) is a prevalent non-invasive imaging method which provides high resolution volumetric visualization of retina. However, its inherent defect, the speckle noise, can seriously deteriorate the tissue visibility in OCT. Deep learning based approaches have been widely used for image restoration, but most of them require supervision from a noise-free reference image which is inaccessible for medical images. In this study, we present a diffusion probabilistic
model that is fully unsupervised to learn from noise instead of signal. A diffusion process is defined by adding a sequence of Gaussian noise to self-fused OCT b-scans. Then the reverse process of diffusion, modeled by a Markov chain, provides an adjustable level of denoising. Our experiment results demonstrate that our method
can significantly improve the image quality with a simple working pipeline and a small amount of training data.
The overall pipeline of the work is shown as following:
<p align="center">
<img src="/assets/workflow.png" alt="drawing" width="650"/>
</p>
We first leverage the self-fusion method as a pre-processing step to create a relatively high SNR image as it is shown in **a.self-fusion**. Then we gradually add small Gaussian noise to the self-fused image as the diffusion process. The denoising process is realized by a deep model that learns the pattern of the noise. Detailed derivation is available in the paper.
>- The number of denoising step t is an extra hyperparameter. Then the model can denoise image with different noise level by adjusting t. In our experiment we show that the input with lower SNR needs more steps to reach the optimal visual effect.
### Self-Fusion
Inherited from the joint label fusion, self-fusion regards b-scans in a small vicinity of a given target b-scan as ‘atlases’ because of their structural similarity. After registering the neighbors to the target b-scan, a pixel-wise weighted average of these ‘atlases’ will result in an image with high signal-to-noise ratio (SNR). The weight of each pixel is determined by a patch-wise similarity metric. The source paper is [**Self-fusion for OCT noise reduction**](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643350/), and a learning-based version is [**Retinal OCT Denoising with Pseudo-Multimodal Fusion Network**](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9241435/). The label fusion software is availble under /label-fusion/, and an example bash file is provided (self_fusion.sh).
### Diffusion Probabilitic Model
The code is arranged as following:
basic function and normalizing tools : util.py
pre-processing and data loader: OCT_dataloader.py
Gaussian diffusion and denoising process: DDPM_GuassianDiffusion.py
network architecture: DDPM_Net.py
training: DDPM_main.py
testing: DDPM_test.py
### Checkpoints
In the ckpts folder, the model used to denoise the retina OCT is provided. Note that the intensity should be normalized to range [1,3] for this model.
Please cite our work:
```
@inproceedings{hu2022unsupervised,
title={Unsupervised denoising of retinal OCT with diffusion probabilistic model},
author={Hu, Dewei and Tao, Yuankai K and Oguz, Ipek},
booktitle={Medical Imaging 2022: Image Processing},
volume={12032},
pages={25--34},
year={2022},
organization={SPIE}
}
```
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
本项目聚焦于基于扩散概率模型在无监督光学相干断层扫描(OCT)去噪中的应用。OCT是一种高分辨率的医学影像技术,常用于视网膜、心血管等疾病的诊断。 传统的OCT去噪方法往往需要依赖于带有清晰图像的监督学习,而本项目则探索在无监督环境下,利用扩散概率模型对OCT图像进行去噪。该方法无需清晰的图像作为监督,能够有效减少对大量标注数据的依赖。 在数据集方面,我们使用了公开的OCT影像数据集,如OCT2017等,并进行了预处理,包括图像裁剪、大小调整和归一化等。在环境搭建方面,我们使用Python编程语言,基于TensorFlow和PyTorch深度学习框架进行开发。为了提高计算效率,我们还使用了GPU加速计算。此外,我们还采用了Docker容器技术,确保实验结果的可重复性。 项目完成后,将实现对OCT图像的无监督去噪,提高医学影像的清晰度和可用性,为相关疾病的诊断和治疗提供有力支持。同时,项目成果也可应用于其他无监督去噪任务。
资源推荐
资源详情
资源评论
收起资源包目录
基于扩散概率模型在无监督OCT去噪中的应用.zip (12个子文件)
ckpts
DDPM_oct_dataset2_2021-07-08.pt 8.33MB
assets
workflow.png 104KB
rm.md 1B
src
DDPM_GaussianDiffusion.py 4KB
util.py 5KB
DDPM_Net.py 13KB
DDPM_test.py 3KB
DDPM_main.py 6KB
OCT_dataloader.py 3KB
label-fusion
self_fusion.sh 426B
label_fusion 15.36MB
readme.md 4KB
共 12 条
- 1
资源评论
AI拉呱
- 粉丝: 2842
- 资源: 5448
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功