# Designing Network Design Spaces
## Introduction
[BACKBONE]
We implement RegNetX and RegNetY models in detection systems and provide their first results on Mask R-CNN, Faster R-CNN and RetinaNet.
The pre-trained modles are converted from [model zoo of pycls](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
```latex
@article{radosavovic2020designing,
title={Designing Network Design Spaces},
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He and Piotr Dollár},
year={2020},
eprint={2003.13678},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
## Usage
To use a regnet model, there are two steps to do:
1. Convert the model to ResNet-style supported by MMDetection
2. Modify backbone and neck in config accordingly
### Convert model
We already prepare models of FLOPs from 400M to 12G in our model zoo.
For more general usage, we also provide script `regnet2mmdet.py` in the tools directory to convert the key of models pretrained by [pycls](https://github.com/facebookresearch/pycls/) to
ResNet-style checkpoints used in MMDetection.
```bash
python -u tools/model_converters/regnet2mmdet.py ${PRETRAIN_PATH} ${STORE_PATH}
```
This script convert model from `PRETRAIN_PATH` and store the converted model in `STORE_PATH`.
### Modify config
The users can modify the config's `depth` of backbone and corresponding keys in `arch` according to the configs in the [pycls model zoo](https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md).
The parameter `in_channels` in FPN can be found in the Figure 15 & 16 of the paper (`wi` in the legend).
This directory already provides some configs with their performance, using RegNetX from 800MF to 12GF level.
For other pre-trained models or self-implemented regnet models, the users are responsible to check these parameters by themselves.
**Note**: Although Fig. 15 & 16 also provide `w0`, `wa`, `wm`, `group_w`, and `bot_mul` for `arch`, they are quantized thus inaccurate, using them sometimes produces different backbone that does not match the key in the pre-trained model.
## Results
### Mask R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | mask AP | Config | Download |
| :---------: | :-----: | :-----: | :------: | :------------: | :----: | :-----: | :------: | :--------: |
| [R-50-FPN](../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py)| pytorch | 1x | 4.4 | 12.0 | 38.2 | 34.7 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205_050542.log.json) |
|[RegNetX-3.2GF-FPN](./mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py)| pytorch | 1x |5.0 ||40.3|36.6|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141-2a9d1814.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_1x_coco_20200520_163141.log.json) |
|[RegNetX-4.0GF-FPN](./mask_rcnn_regnetx-4GF_fpn_1x_coco.py)| pytorch | 1x |5.5||41.5|37.4|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217-32e9c92d.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco/mask_rcnn_regnetx-4GF_fpn_1x_coco_20200517_180217.log.json) |
| [R-101-FPN](../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py)| pytorch | 1x | 6.4 | 10.3 | 40.0 | 36.1 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204-1efe0ed5.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r101_fpn_1x_coco/mask_rcnn_r101_fpn_1x_coco_20200204_144809.log.json) |
|[RegNetX-6.4GF-FPN](./mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py)| pytorch | 1x |6.1 ||41.0|37.1|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439-3a7aae83.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco/mask_rcnn_regnetx-6.4GF_fpn_1x_coco_20200517_180439.log.json) |
| [X-101-32x4d-FPN](../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py) | pytorch | 1x | 7.6 | 9.4 | 41.9 | 37.5 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205-478d0b67.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco/mask_rcnn_x101_32x4d_fpn_1x_coco_20200205_034906.log.json) |
|[RegNetX-8.0GF-FPN](./mask_rcnn_regnetx-8GF_fpn_1x_coco.py)| pytorch | 1x |6.4 ||41.7|37.5|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515-09daa87e.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco/mask_rcnn_regnetx-8GF_fpn_1x_coco_20200517_180515.log.json) |
|[RegNetX-12GF-FPN](./mask_rcnn_regnetx-12GF_fpn_1x_coco.py)| pytorch | 1x |7.4 ||42.2|38|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552-b538bd8b.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco/mask_rcnn_regnetx-12GF_fpn_1x_coco_20200517_180552.log.json) |
|[RegNetX-3.2GF-FPN-DCN-C3-C5](./mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py)| pytorch | 1x |5.0 ||40.3|36.6|[config](https://github.com/open-mmlab/mmdetection/tree/master/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726-75f40794.pth) | [log](https://download.openmmlab.com/mmdetection/v2.0/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco_20200520_172726.log.json) |
### Faster R-CNN
| Backbone | Style | Lr schd | Mem (GB) | Inf time (fps) | box AP | Config | Download |
| :---------: | :-----: | :-----: | :------: | :------------: | :----: | :------: | :--------: |
| [R-50-FPN](../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py)| pytorch | 1x | 4.0 | 18.2 | 37.4 | [config](https://github.com/open-mmlab/mmdetection/tree/master/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py) | [model](https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth) | [log
没有合适的资源?快使用搜索试试~ 我知道了~
mmdet商汤深度学习框架
共1885个文件
py:1510个
md:95个
yml:60个
需积分: 5 3 下载量 195 浏览量
2022-12-01
15:56:23
上传
评论
收藏 18.11MB ZIP 举报
温馨提示
mmdet商汤深度学习框架
资源推荐
资源详情
资源评论
收起资源包目录
mmdet商汤深度学习框架 (1885个子文件)
0db019a8e3036935628bfc33dad416f83d87a1 2KB
1998f945ddcc44b6c1a8666fa84ce786631a26 4KB
26cc039bf31c99ac3cd3bb7e7f9b1b2bf28571 2KB
2cda1fe5b558b56b46223e0fd7b4f8091d3d49 234B
2e45c7b3bd852cedba191c36736e7a5d545b66 204B
3095af97bd4a7c797840c1971fe7e798fc1acb 3KB
34e4d7d48b01a4743ba46f00aa742daf946073 2KB
35f4e139bcd8b6e834f565a227702d6733a1eb 453B
3727940f52a81d5a0eafd724c5949644bb119a 435B
398d1a5a0c763e713eafa792500530fc0a6e10 225B
3e6ba963c6aeceb408a500ef7ed992c5b5008f 606B
4049a11a94eeb0b8b8fc1d540790932fc8bdd2 437B
45234bed927632a71f323cd5dc38f05aee0f96 941B
499d02381da64f5fdcece38edc7acc0ca5f7c8 2KB
4e2f14a23adc9c76faa87ed7da154917e188a7 1KB
52ea4c0ff4321ad2e26f1baa3c66a027c9615f 3KB
53b5085395c54e22007105b7fb6c2c1e08690f 2KB
57eb1a3f600b16d26113e62f644ab00b559ed0 858B
5e4b174bb4f18831c91be6c09c5d7ac5fb2007 178B
5f9609a2db6e53f5f864f125a92922b38912b9 441B
64fd6d71f95abc5bb7bb894e31d39b4fe42cc5 3KB
67cc2af17b10cb124584ca569af2694c89e15c 384B
68ed2753018a3dcab95a9bc502c607f5a321d4 471B
6eebf11495745cce71f4d98553cca1c292adec 825B
7111b8f2d2c5a08596406a3fa0830757d87ca6 414B
7f0251382886833399a5d5cb8e6a0a1324bdfe 304B
80fe47a396295bee51088c19e5af88554a402b 2KB
8101cf55df5bcb3b680cf071f6308dd02232aa 306B
8220007157d8ca3047310014cbedb5ed38e2e0 238B
8244b8c9454b616578bf9c71ad186754f40864 350B
829c92e30bbb717440a0ffe8f20af0ce96ecdb 596B
83b1a41ba3da5d22fb4882148a03aa21301976 2KB
887787ec090b1dfa0d77e53172d55c1cfbea35 253B
89f78e019c226413a1e24bed316abe0d32409c 8KB
pip3.9 253B
pip-3.9 253B
wheel-3.9 240B
wheel3.9 240B
python3.9 6B
9222dd64da3fcd1c552edfe7798d3cc25312df 858B
957d9d856c52f80f82e91155c80f632609f6ed 1KB
9de29bb2d1d6434b8b29ae775ad8c2e48c5391 15B
activate 2KB
b86d75863939d20277b29f34fbb34650df2c8d 272B
make.bat 760B
bc498f3201aa94a608584bb9720b99e721a0a6 2KB
c6367e97cb173e897c92295e975ffe53465706 468B
c777db36903a63c0c0572db60deac26d1cb24c 1KB
cc655034d88cd67d5a69581369b8df94bfb912 1KB
sysconfig.cfg 3KB
pyvenv.cfg 479B
setup.cfg 470B
COMMIT_EDITMSG 148B
config 313B
activate.csh 1KB
d1866fa3c44ec9dd74caee7704c63f464aa637 357B
d315dcbf63a1298a76283d92fef9149729abde 441B
description 73B
dev 681B
dev 359B
dev 41B
dev 41B
Dockerfile 1KB
Dockerfile 817B
.DS_Store 10KB
.DS_Store 10KB
.DS_Store 10KB
.DS_Store 6KB
.DS_Store 6KB
.DS_Store 6KB
e841d1635402cfe189bdce5628629c2de3bc19 1KB
ed9080fabd279163ed44f4c8a52cf97b5d8fc9 2KB
ee8089288ec614b4bb270a0bb172ab85100cf8 2KB
exclude 240B
t64.exe 104KB
w64.exe 98KB
t32.exe 95KB
w32.exe 88KB
gui-64.exe 74KB
cli-64.exe 73KB
gui.exe 64KB
gui-32.exe 64KB
cli-32.exe 64KB
cli.exe 64KB
f28792cdc7f3783026aff9b1f8faba22632a3c 130B
f7b7441ddd6e89ac7f44b160170b4a2b3c9a64 539B
f97711b9f9d1540eb9c1c939c6666b07a16ea3 448B
FETCH_HEAD 224B
activate.fish 3KB
.gitignore 1KB
.gitignore 47B
.gitignore 40B
HEAD 681B
HEAD 199B
HEAD 29B
HEAD 20B
pack-c80ddd5dfb2bbe9842e959236ab12e0fb3d820a6.idx 46KB
pack-084656b167527a2d793845773b1497552fe3b19e.idx 6KB
mmdet.iml 352B
MANIFEST.in 183B
共 1885 条
- 1
- 2
- 3
- 4
- 5
- 6
- 19
资源评论
Wanhahawawa
- 粉丝: 0
- 资源: 3
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功