TopicExpertiseModel =================== /** Copyright (C) 2013 by SMU Text Mining Group/Singapore Management University/Peking University TopicExpertiseModel is distributed for research purpose, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. If you use this code, please cite the following paper: Liu Yang, Minghui Qiu, Swapna Gottipati, Feida Zhu, Jing Jiang, Huiping Sun and Zhong Chen. CQARank: Jointly Model Topics and Expertise in Community Question Answering. In Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (CIKM 2013). (http://dl.acm.org/citation.cfm?id=2505720) Feel free to contact the following people if you find any problems in the package. yang.liu@pku.edu.cn * */ Brief Introduction =================== 1. Community Question Answering (CQA) websites, where people share expertise on open platforms, have become large repositories of valuable knowledge. To bring the best value out of these knowledge repositories, it is critically important for CQA services to know how to find the right experts, retrieve archived similar questions and recommend best answers to new questions. To tackle this cluster of closely related problems in a principled approach, we proposed Topic Expertise Model (TEM), a novel probabilistic generative model with GMM hybrid, to jointly model topics and expertise by integrating textual content model and link structure analysis. Based on TEM results, we proposed CQARank to measure user interests and expertise score under different topics. Leveraging the question answering history based on long-term community reviews and voting, our method could find experts with both similar topical preference and high topical expertise. 2. This package implements Gibbs sampling for Topic Expertise Model for jointly modeling topics and expertise in question answering communities. More details of our model are described in the following paper: Liu Yang, Minghui Qiu, Swapna Gottipati, Feida Zhu, Jing Jiang, Huiping Sun and Zhong Chen. CQARank: Jointly Model Topics and Expertise in Community Question Answering. In Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (CIKM 2013). (http://dl.acm.org/citation.cfm?id=2505720)
- 1
- 2
- hello_world542018-06-07github开源的代码还好意思收C币,链接 https://github.com/yangliuy/TopicExpertiseModel
- 粉丝: 0
- 资源: 1
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 五险一金年度成本统计图.xlsx
- 华为云全新设计的SDK V3版本,提供统一的SDK使用方式 通过添加依赖或下载的方式调用华为云API,访问华为云应用、资源和数据 无需关心请求细节即可快速使用弹性云服务器、虚拟私有云等多个华为云服务
- 数据分析-23-糖尿病预测(线性回归模型)(包含数据代码)
- AES128算法子VI,labview版本,全网不好找 已经在产线批量使用,某出口OEM控制器使用的秘钥算法
- Christmas.html
- 劳动法律法规工伤赔偿表格.xlsx
- 缴纳五险一金台账.xls
- 全国五险一金信息大全(多表格).xls
- 员工五险一金预算表(多省市)..xls
- ToDoer是一个Windows平台的桌面便签软件,基于QT Qml实现,支持用户自定义便签列表
- 宣城市五险一金办事指南 .docx
- 数据分析-24-母婴产品电商可视化分析(包含代码数据)
- 江门市五险一金办事指南.docx
- 梅州市五险一金办事指南.docx
- 深圳市五险一金办事指南.docx
- 中山市五险一金办事指南.docx