ii CONTENTS
3.4 Convolution in Action I: A Little Bit on Filtering . . . . . . . . . . . . . . . . . . . . . . . . 102
3.5 Convolution in Action II: Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.6 Convolution in Action III: The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . 116
3.7 The Central Limit Theorem: The Bell Curve Tolls for Thee . . . . . . . . . . . . . . . . . . 128
3.8 Fourier transform formulas under different normalizations . . . . . . . . . . . . . . . . . . . 130
3.9 Appendix: The Mean and Standard Deviation for the Sum of Random Variables . . . . . . 131
3.10 More Details on the Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
3.11 Appendix: Heisenberg’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4 Distributions and Their Fourier Transforms 137
4.1 TheDayofReckoning ....................................... 137
4.2 The Right Functions for Fourier Transforms: Rapidly Decreasing Functions . . . . . . . . . 142
4.3 AVeryLittleonIntegrals..................................... 148
4.4 Distributions ............................................ 152
4.5 A Physical Analogy for Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.6 LimitsofDistributions.......................................165
4.7 The Fourier Transform of a Tempered Distribution . . . . . . . . . . . . . . . . . . . . . . . 168
4.8 Fluxions Finis: The End of Differential Calculus . . . . . . . . . . . . . . . . . . . . . . . . 174
4.9 Approximations of Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
4.10 The Generalized Fourier Transform Includes the Classical Fourier Transform . . . . . . . . 178
4.11 Operations on Distributions and Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . 179
4.12 Duality, Changing Signs, Evenness and Oddness . . . . . . . . . . . . . . . . . . . . . . . . 179
4.13 A Function Times a Distribution Makes Sense . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4.14TheDerivativeTheorem...................................... 185
4.15 Shifts and the Shift Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.16 Scaling and the Stretch Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.17 Convolutions and the Convolution Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.18 δ HardatWork...........................................195
4.19 Appendix: The Riemann-Lebesgue lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
4.20Appendix:SmoothWindows ................................... 206
4.21 Appendix: 1/x as a Principal Value Distribution . . . . . . . . . . . . . . . . . . . . . . . . 209
5 III, Sampling, and Interpolation 211
5.1 X-Ray Diffraction: Through a Glass Darkly
1
.......................... 211
5.2 TheIIIDistribution ........................................212
5.3 TheFourierTransformofIII.................................... 216
- 1
- 2
- 3
前往页