Mastering Machine Learning with scikit-learn [2017,第二版]
Mastering Machine Learning with scikit-learn - Second Edition by Gavin Hackeling English | 24 July 2017 | ASIN: B06ZYRPFMZ | ISBN: 1783988363 | 254 Pages | AZW3 | 5.17 MB Key Features Master popular machine learning models including k-nearest neighbors, random forests, logistic regression, k-means, naive Bayes, and artificial neural networks Learn how to build and evaluate performance of efficient models using scikit-learn Practical guide to master your basics and learn from real life applications of machine learning Book Description Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn's API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model's performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach. What you will learn Review fundamental concepts such as bias and variance Extract features from categorical variables, text, and images Predict the values of continuous variables using linear regression and K Nearest Neighbors Classify documents and images using logistic regression and support vector machines Create ensembles of estimators using bagging and boosting techniques Discover hidden structures in data using K-Means clustering Evaluate the performance of machine learning systems in common tasks About the Author Gavin Hackeling is a data scientist and author. He was worked on a variety of machine learning problems, including automatic speech recognition, document classification, object recognition, and semantic segmentation. An alumnus of the University of North Carolina and New York University, he lives in Brooklyn with his wife and cat. Table of Contents The Fundamentals of Machine Learning Simple linear regression Classification and Regression with K Nearest Neighbors Feature Extraction and Preprocessing From Simple Regression to Multiple Regression From Linear Regression to Logistic Regression Naive Bayes Nonlinear Classification and Regression with Decision Trees From Decision Trees to Random Forests, and other Ensemble Methods The Perceptron From the Perceptron to Support Vector Machines From the Perceptron to Artificial Neural Networks Clustering with K-Means Dimensionality Reduction with Principal Component Analysis
- oyrfasdf2017-12-24没下载完全 额
- leichangqing2019-02-27非常好的资料
- 冯俊杰�Winston2019-02-10azw is not as good as PDF
- a123_123a_a1232018-01-30.azw3 格式...我真是醉了
- 粉丝: 414
- 资源: 651
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于Java、Vue、JavaScript、CSS、HTML的毕设设计源码
- 基于Java和HTML的CMS看点咨询系统设计源码
- 基于Java语言的MyCache缓存系统设计源码实现教程
- 招聘信息:平面设计师(文创产品方向).pages
- vo_ai_name_blank_40.wav
- 基于HTML、JavaScript、CSS的楼盘系统移动端前端设计源码
- 基于Java及Vue框架的中职院校技能大赛教学能力比赛报名评审平台设计源码
- 基于Java语言的panghu收支统计网站后端设计源码
- 基于Python的网易云音乐API接口设计与实现源码
- 基于Java语言的CustomRelationshipManagement汇客CRM设计源码