没有合适的资源?快使用搜索试试~ 我知道了~
maxent tutorial slides
需积分: 9 7 下载量 42 浏览量
2018-04-07
14:22:43
上传
评论 1
收藏 10.28MB PDF 举报
温馨提示
Maxent Models , Conditional Estimation, and Optimization Dan Klein and Chris Manning Stanford University http : //nlp.stanford.edu/ HLT-NAACL2003 and ACL2003 Tutorial Without Magic That is,With Math!
资源推荐
资源详情
资源评论
Maxent Mo d el s , C o nd i ti o nal
E s ti m ati o n, and O p ti m i z ati o n
Dan Klein and Chris Manning
S t anf o rd U niv ersit y
ht t p : //nlp .st anf o rd.edu /
HLT-N A A C L 2 0 0 3 a n d A C L 2 0 0 3 Tu t o r i a l
Without
M a g i c
That is,
W ith M ath!
Introduction
In recent years there has been extensive use
o f conditio nal o r dis cr im inativ e p ro babil istic
m o d el s in N L P , IR , and S p eech
B ecause:
They give high accuracy performance
They make it easy to incorporate lots of
ling u istically important featu res
They allow au tomatic b u ild ing of lang u ag e
ind epend ent, retarg etab le N L P mod u les
Joint vs. Conditional Models
Joint (generative) models p lac e p rob ab ilities over
b oth ob served data and th e h idden stu f f (gene-
rate th e ob served data f rom h idden stu f f ):
A ll th e b est k now n S tatN L P models:
n- gram models, Naive Bayes classifiers, hidden
M ark ov models, p rob ab ilist ic cont ex t -free grammars
Discriminative (conditional) models tak e th e data
as g iven, and p u t a p rob ab ility over h idden
stru ctu re g iven th e data:
L ogist ic regression, condit ional loglinear models,
max imu m ent rop y mark ov models, ( S V M s,
p ercep t rons)
P (c, d)
P (c| d)
Bayes Net/Graphical Models
Bayes net diagrams draw circles for random
v ariab les, and lines for direct dep endencies
S ome v ariab les are ob serv ed; some are h idden
E ach node is a little classifier ( conditional
p rob ab ility tab le) b ased on incoming arcs
c
1
c
2
c
3
d
1
d
2
d
3
HMM
c
d
1
d
2
d
3
Naive Bayes
c
d
1
d
2
d
3
Generative
L o g ist ic R eg r essio n
D is c rim inative
Conditional models work well:
W ord S ense D isamb ig u ation
Even with exactly the
s am e f eatu r es
, c ha ng ing
f r o m j o int to c o nd itio na l
es tim a tio n inc r ea s es
p er f o r m a nc e
T ha t is , we u s e the s a m e
s m o o thing , a nd the s a m e
w o r d -clas s f ea tu r es , we
j u s t c ha ng e the nu m b er s
( p a r a m eter s )
T r a ining S et
9 8 . 5C o nd . L ik e.
8 6 . 8J o int L ik e.
A c c u r a c yO b j ec tive
T es t S et
7 6 . 1C o nd . L ik e.
7 3 . 6J o int L ik e.
A c c u r a c yO b j ec tive
(Klein and Manning 2002, using S ensev al-1 D at a)
剩余118页未读,继续阅读
资源评论
mafanhe
- 粉丝: 17
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功