Matlab's Neural Network Toolbox User’s Guide2014b


-
matlab 神经网络工具箱2014b Matlab's Neural Network Toolbox User’s Guide
y June 1992 First printing April 1993 Second printing January 1997 Third printing July 1997 Fourth printing January 1998 Fifth printing Revised for Version 3( Release 11) September 2000 Sixth printing Revised for Version 4(Release 12) June 2001 Seventh printing Minor revisions release 12.1 July 2002 Online onl Minor revisions Release 13) January 2003 Online only Minor revisions (release 13SP1) June 2004 Online only Revised for Version 4.0.3(Release 14) October 2004 Online onl Revised for Version 4.0.4(Release 14SP1) October 2004 Eighth printin March 2005 Online only8 Revised for Version 4. 0.4 Revised for Version 4.0.5(Release 14SP2) March 2006 Online onl, Revised for Version 5.0(Release 2006a) September 2006 Ninth printing Minor revisions (release 2006b) March 2007 Online only Minor revisions(release 2007a) September 2007 Online only Revised for Version 5. 1( Release 2007b) March 2008 Online only Revised for Version 6.0 Release 2008a) October 2008 Online only Revised for Version 6.0.1(Release 2008b) March 2009 Online only Revised for Version 6.0.2(Release 2009a) September 2009 Online only Revised for Version 6.0.3(Release 2009b) March 2010 Online only Revised for Version 6.0.4( Release 2010a) September 2010 Online only Revised for Version 7.0( Release 2010b) April 2011 Online only Revised for Version 7.0.1(Release 2011a) September 2011 Online only Revised for Version 7.0.2 (Release 2011b) March 2012 Online only Revised for Version 7.0.3 (Release 2012a September 2012 Online only Revised for Version 8.0 (Release 2012b) March 2013 Online only Revised for Version 8.0.1Release 2013a September 2013 Online only Revised for Version 8. 1(Release 2013b) March 2014 Online only Revised for Version 8.2 (Release 2014a October 2014 Online only Revised for Version 8.2.1(Release 2014b) Contents Neural Network Toolbox Design Book Neural Network Objects, Data, and Training Styles Workflow for Neural Network Design 1-2 Four Levels of Neural Network design 1-4 Neuron model Simple neuron 1-5 Transfer functions 1-6 Neuron with Vector Input Neural Network Architectures 1-11 One Layer of Neurons 1-11 Multiple layers of Neurons 1-13 Input and Output Processing Functions 1-15 Create Neural Network Object Configure Neural Network Inputs and Outputs 1-21 Understanding Neural Network Toolbox Data Structures 1-23 Simulation with Concurrent Inputs in a Static Network 1-23 Simulation with Sequential Inputs in a Dynamic Network 1-24 Simulation with Concurrent Inputs in a Dynamic Network. 1-26 Neural Network Training Concepts 1-28 Incremental Training with adapt 1-28 Batch Training 1-30 Training Feedback 1-33 Multilayer Neural Networks and Backpropagation Training 2 Multilayer Neural Networks and Backpropagation Training 2-2 Multilayer Neural Network Architecture 2-4 Neuron Model (logsig, tansig, purelin) 2-4 Feedforward Neural Network 2-5 Prepare Data for Multilayer Neural Networks 2-8 Choose Neural Network Input-Output Processing Functions Representing Unknown or Don't-Care Targets 2-9 2-11 Divide data for Optimal Neural Network training 2-12 Create, Configure, and Initialize Multilayer Neural Networks 2-14 Other related Architectures 2-15 Initializing Weights(init) 2-15 Train and Apply multilayer Neural Networks 2-17 Training algorithms 2-18 Training Example 2-20 Use the network 2-22 Analyze Neural Network Performance After Training 2-23 Improving Results 2-28 Limitations and cautions 2-29 Contents Dynamic Neural Networks 3 Introduction to Dynamic Neural Networks 3-2 How Dynamic Neural Networks Work 3-3 Feedforward and recurrent neural networks 3-3 Applications of Dynamic Networks 3-11 Dynamic Network Structures 3-11 Dynamic Network Training 3-12 Design Time Series Time-Delay Neural Networks 3-14 Prepare Input and Layer Delay States 3-18 Design Time Series Distributed Delay Neural Networks.. 3-20 Design Time Series NARX Feedback Neural Networks 3-23 Multiple external Variables.............3-30 Design Layer-Recurrent Neural Networks 3-31 Create Reference Model Controller with MATLAB Script 3-34 Multiple Sequences with Dynamic Neural Networks 3-41 Neural Network Time-Series Utilities 3-42 Train Neural Networks with Error Weights 3-44 Normalize Errors of Multiple Outputs 3-47 Multistep Neural Network Prediction 3-52 Up in Open-Loop Mode 3-52 Multistep Closed-Loop Prediction From Initial Conditions 3-53 Multistep Closed-Loop Prediction Following Known queI 3-53 Following Closed-Loop Simulation with Open-Loop Simulation 3-54 Control Systems Introduction to Neural Network Control Systems 4-2 Design Neural Network Predictive Controller in Simulink 44 ystem Identification 4-4 Predictive Control 4-5 Use the Neural network predictive Controller block 4-6 Design NARMA-L2 Neural Controller in Simulink 4-14 Identification of the Narma-l2 Model 4-14 NARMA-L2 Controller 4-16 Use the NARMA-L2 Controller block 4-18 Design Model-Reference Neural Controller in Simulink 4-23 Use the model reference Controller block 4-24 Import-Export Neural Network Simulink Control Systems 4-31 Import and Export Networks 4-31 Import and Export Training Data 4-35 Radial Basis neural networks 5 Introduction to Radial basis Neural networks 5-2 Important Radial Basis Functions Radial basis Neural networks 5-3 Neuron model 5-3 Network architecti 5-4 Exact Design (newrbe) 5-6 More Efficient Design (newrb Examples 5-8 Probabilistic Neural networks 5-10 Network Architecture 5-10 Design (newpnn) 5-11 Contents Generalized Regression Neural Networks 5-13 Network Architecture 5-13 Design(newgrnn 5-15 Self-Organizing and Learning Vector Quantization Networks 6 Introduction to Self-Organizing and Lvq 6-2 Important Self-Organizing and LvQ Functions 6-2 Cluster with a Competitive Neural Network 6-3 Architecture 6-3 Create a Competitive Neural Network 6-4 Kohonen Learning Rule (learnk 6-5 Bias Learning rule dlearncon) 6-5 Training 6-6 Graphical Example 6-8 Cluster with Self-Organizing Map Neural Network 6-9 Topologies(gridtop, hextop, randtop 6-11 Distance Functions(dist, linkdist, mandis, boxdist) 6-14 Architecture 6-17 Create a Self-Organizing Map Neural Network(selforgmap) 6-18 Training (learnsomb) 6-19 E 6-22 Learning Vector quantization (LvQ) Neural Networks 6-34 Architecti 6-34 Creating an LvQ Network 6-35 LvQ1 Learning Rule (learnlv1) 6-38 Training 6-39 Supplemental lvQ2. 1 Learning Rule (learnlv2 6-41 Adaptive Filters and Adaptive Training 7 Adaptive Neural Network Filters 7-2 Adapt p tive functions 7-2 Linear neuron model 7-3 Adaptive Linear Network Architecture 7-3 ast mean Square error 7-6 LMS Algorithm (learnwh) 7-7 Adaptive Filtering(adapt 7-7 Advanced Topics Neural Networks with Parallel and gPu computing 8-2 Modes of parallelism 8-2 Distributed Computing 8-3 Single gPu computing 8-5 Distributed GPu Computing 8-8 Parallel Time Series 8-9 Parallel availability, Fallbacks, and Feedback 8-10 Optimize Neural Network Training Speed and Memory 8-12 Memory reduction 8-12 Fast Elliot Sigmoid 8-12 Choose a Multilayer Neural Network Training Function 8-16 siN Data set 8-17 PARITY Data set 8-19 ENGINE Data set 8-21 CANCER Data set 8-23 CHOLESTEROL Data set 8-25 DIABETES Data Set 8-27 Summary 8-29 Improve Neural Network Generalization and Avoid Overfitting 8-31 Retraining neural Networks 8-32 Multiple neural Networks 8-34 Content
-
2017-07-26
-
2016-11-27
-
2016-05-28
2.26MB
matlab 2011 Neural Network Toolbox User's Guide
2013-12-24matlab 2011 Neural Network Toolbox User's Guide,是matlab 2011神经网络工具箱的详细使用说明
4.87MB
Matlab - Neural Network Toolbox - User's Guide
2011-11-10Matlab - Neural Network Toolbox - User's Guide
5.9MB
Matlab's Neural Network Toolbox User’s Guide
2009-05-18The Neural Network Toolbox is written so that if you read Chapter 2, Chapter 3 and Chapter 4 you can proceed to a later chapter, read it and use its functions without difficulty. To make this possible, Chapter 2 presents the fundamentals of the neuron model, the architectures of neural networks. It also will discuss notation used in the architectures. All of this is basic material. It is to your advantage to understand this Chapter 2 material thoroughly. The neuron model and the architecture of a neural network describe how a network transforms its input into an output. This transformation can be viewed as a computation. The model and the architecture each place limitations on what a particular neural network can compute. The way a network computes its output must be understood before training methods for the network can be explained.
2.20MB
Neural Network Toolbox Getting Started Guide
2015-02-03神经网络现在又重新回到很多人关注的焦点中,所以特地把MATLAB 2014A中有关神经网络的工具箱使用资料分享给大家。 以下是目录摘要: ----------------------------------------------------- Automatic Script Generation . . . . 1-6 Neural Network Toolbox Applications . 1-7 Neural Network Design Steps . . . . . 1-9 Fit Data with a Neural Network . . . 1-10 Defining a Problem. . . . . . . . . . 1-10 Using the Neural Network Fitting Tool . . 1-12 Using Command-Line Functions . . . . . . . 1-23 Classify Patterns with a Neural Network . . 1-33 Defining a Problem . . . . . . . . . . .. . 1-33 Using the Neural Network Pattern Recognition Tool .. 1-35 Using Command-Line Functions . . . . . . . . . . . . 1-47 Cluster Data with a Self-Organizing Map . . . . . . 1-56 Defining a Problem . . . . . . . . . . . . . . . . . 1-56 vii Using the Neural Network Clustering Tool ... . . 1-57 Using Command-Line Functions . . . . . . . . .. . . 1-67 Neural Network Time Series Prediction and Modeling . . . . . . . . . . . . . . . . . . . 1-75 Defining a Problem . . . . . . . . . . . . . . 1-75 Using the Neural Network Time Series Tool . . . . . 1-76 Using Command-Line Functions . . . . . . . . . . . . 1-88 Parallel Computing on CPUs and GPUs . . . . . . . . .1-99 Parallel Computing Toolbox . . . . . . . . . . . . . 1-99 Parallel CPU Workers . . . . . . . . . . . . . . . . 1-99 GPU Computing . . . .. . . . . . . . . . . . . . . . 1-100 Multiple GPU/CPU Computing . . . . . . . . . . . . . 1-100 Cluster Computing with MATLAB Distributed Computing Server . . . . . . . . . . . . . . . . . . . . . . . 1-101 Load Balancing, Large Problems, and Beyond . . . . . 1-101 Neural Network Toolbox Sample Data Sets . . . . . . 1-103
6.41MB
neural network toolbox 6 user's guide
2009-10-15neural network toolbox 6 user's guide
2.40MB
Neural Network Toolbox User's Guide
2015-02-03有关神经网络工具箱的Mathworks官方用户文档(MATLAB 2014A)。 原版,未做仍和裁剪。
7.16MB
Neural Network Toolbox
2008-10-22Matlab Neural Network Toolbox介绍和学习
5.72MB
Matlab Neural Network Toolbox 6 Users Guide
2009-07-12Matlab的神经网络工具箱用户手册,非常全面。
6.44MB
Neural Network Toolbox 6
2010-07-28Matlab神经网络工具箱,配实例讲解,初学者受益匪浅。
2.26MB
2013a Neural Network Toolbox
2013-11-272013a Neural Network Toolbox
421KB
Neural Network Design Demonstrations_nndesign_2014b
2017-04-28Neural Network Design提供的Matlab上的Demo, 神经网络
5.26MB
yibEP LEARNING USING MATLAB NEURAL NETWORK APPLICATIONS.pdf
2019-06-01EP LEARNING USING MATLAB NEURAL NETWORK APPLICATIONS,一本不错的深度学习书籍。
365KB
MATLAB SVM TOOLBOX
2017-04-11关于自动向量机的MATLAB编程工具
33.61MB
Matlab_2014b_Crack(2015-04-09)
2015-04-09包括32位与64位pojie文件与安装步骤 亲测32位可完整pojie安装! ver --------------------------------------------------------------------------------------------- MATLAB Version: 8.4.0.150421 (R2014b) MATLAB License Number: 409xxx Operating System: Microsoft Windows 7 旗舰版 Version 6.1 (Build 7601: Service Pack 1) Java Version: Java 1.7.0_11-b21 with Oracle Corporation Java HotSpot(TM) Client VM mixed mode --------------------------------------------------------------------------------------------- MATLAB Version 8.4 (R2014b) Simulink Version 8.4 (R2014b) Aerospace Blockset Version 3.14 (R2014b) Aerospace Toolbox Version 2.14 (R2014b) Bioinformatics Toolbox Version 4.5 (R2014b) Communications System Toolbox Version 5.7 (R2014b) Computer Vision System Toolbox Version 6.1 (R2014b) Control System Toolbox Version 9.8 (R2014b) Curve Fitting Toolbox Version 3.5 (R2014b) DO Qualification Kit Version 2.4 (R2014b) DSP System Toolbox Version 8.7 (R2014b) Data Acquisition Toolbox Version 3.6 (R2014b) Database Toolbox Version 5.2 (R2014b) Datafeed Toolbox Version 5.0 (R2014b) Econometrics Toolbox Version 3.1 (R2014b) Embedded Coder Version 6.7 (R2014b) Filter Design HDL Coder Version 2.9.6 (R2014b) Financial Instruments Toolbox Version 2.0 (R2014b) Financial Toolbox Version 5.4 (R2014b) Fixed-Point Designer Version 4.3 (R2014b) Fuzzy Logic Toolbox Version 2.2.20 (R2014b) Gauges Blockset Version 2.0.9 (R2014b) Global Optimization Toolbox Version 3.3 (R2014b) HDL Coder Version 3.5 (R2014b) HDL Verifier Version 4.5 (R2014b) IEC Certification Kit Version 3.4 (R2014b) Image Acquisition Toolbox Version 4.8 (R2014b) Image Processing Toolbox Version 9.1 (R2014b) Instrument Control Toolbox Version 3.6 (R2014b) LTE System Toolbox Version 1.2 (R2014b) MATLAB Builder EX Version 2.5.1 (R2014b) MATLAB Builder JA Version 2.3.2 (R2014b) MATLAB Builder NE Version 4.2.2 (R2014b) MATLAB Coder Version 2.7 (R2014b) MATLAB Compiler Version 5.2 (R2014b) MATLAB Distributed Computing Server Version 6.5 (R2014b) MATLAB Report Generator Version 4.0 (R2014b) Mapping Toolbox Version 4.0.2 (R2014b) Model Predictive Control Toolbox Version 5.0 (R2014b) Model-Based Calibration Toolbox Version 4.8 (R2014b) Neural Network Toolbox Version 8.2.1 (R2014b) OPC Toolbox Version 3.3.2 (R2014b) Optimization Toolbox Version 7.1 (R2014b) Parallel Computing Toolbox Version 6.5 (R2014b) Partial Differential Equation Toolbox Version 1.5 (R2014b) Phased Array System Toolbox Version 2.3 (R2014b) Polyspace Bug Finder Version 1.2 (R2014b) Polyspace Code Prover Version 9.2 (R2014b) RF Toolbox Version 2.15 (R2014b) Real-Time Windows Target Version 4.5 (R2014b) Robust Control Toolbox Version 5.2 (R2014b) Signal Processing Toolbox Version 6.22 (R2014b) SimBiology Version 5.1 (R2014b) SimDriveline Version 2.7 (R2014b) SimElectronics Version 2.6 (R2014b) SimEvents Version 4.3.3 (R2014b) SimHydraulics Version 1.15 (R2014b) SimMechanics Version 4.5 (R2014b) SimPowerSystems Version 6.2 (R2014b) SimRF Version 4.3 (R2014b) Simscape Version 3.12 (R2014b) Simulink 3D Animation Version 7.2 (R2014b) Simulink Code Inspector Version 2.2 (R2014b) Simulink Coder Version 8.7 (R2014b) Simulink Control Design Version 4.1 (R2014b) Simulink Design Optimization Version 2.6 (R2014b) Simulink Design Verifier Version 2.7 (R2014b) Simulink PLC Coder Version 1.8 (R2014b) Simulink Real-Time Version 6.1 (R2014b) Simulink Report Generator Version 4.0 (R2014b) Simulink Verification and Validation Version 3.8 (R2014b) Spreadsheet Link EX Version 3.2.2 (R2014b) Stateflow Version 8.4 (R2014b) Statistics Toolbox Version 9.1 (R2014b) Symbolic Math Toolbox Version 6.1 (R2014b) System Identification Toolbox Version 9.1 (R2014b) SystemTest Version 2.6.8 (R2014b) Trading Toolbox Version 2.1.1 (R2014b) Vehicle Network Toolbox Version 2.3 (R2014b) Wavelet Toolbox Version 4.14 (R2014b) >>
228KB
Matlab语言的Neural Network Toolbox 及其在同步中的应用
2021-02-03Matlab语言的Neural Network Toolbox 及其在同步中的应用、电子技术,开发板制作交流
1.6MB
5G Toolbox Getting Started Guide.pdf
2021-01-195G Toolbox Getting Started Guide
4KB
使用神经网络进行预测 (MATLAB版)Neural Networks predict
2018-04-19使用神经网络进行预测,有BF,FF,GRNN,RBF网络等, 使用神经网络进行预测 (MATLAB版)Neural Networks predict
-
下载
开源php+mysql.rar
开源php+mysql.rar
-
下载
F4最小系统OV7725(无FIFIO).rar
F4最小系统OV7725(无FIFIO).rar
-
下载
爬取凤凰新闻.pyPython自学,文件录入
爬取凤凰新闻.pyPython自学,文件录入
-
下载
图书馆+网上选课系统UML.zip
图书馆+网上选课系统UML.zip
-
下载
F103ZET6 OLED显示ADC.rar
F103ZET6 OLED显示ADC.rar
-
下载
kj-第10章结构体和其他数据类型.ppt
kj-第10章结构体和其他数据类型.ppt
-
下载
在线Photoshop做图源码.zip
在线Photoshop做图源码.zip
-
下载
项目管理工作流程.doc
项目管理工作流程.doc
-
下载
c语言实现base64编码
c语言实现base64编码
-
下载
南昌大学353卫生综合考研复习题及参考答案
南昌大学353卫生综合考研复习题及参考答案
