<!--- SPDX-License-Identifier: Apache-2.0 -->
# Age and Gender Classification using Convolutional Neural Networks
## Description
Automatic age and gender classification has become relevant to an increasing amount of applications, particularly since the rise of social platforms and social media. Nevertheless, performance of existing methods on real-world images is still significantly lacking, especially when compared to the tremendous leaps in performance recently reported for the related task of face recognition.
## Models
| Model (Caffe) | Download | ONNX version | Opset version | Dataset |
|:-------------|:--------------|:--------------|:--------------|:--------------|
| [googlenet_age_adience](https://drive.google.com/drive/folders/1GeLTHzHALgTYFj2Q9o5aWdztA9WzoErx?usp=sharing) | [23 MB](models/age_googlenet.onnx) | 1.6 | 11 | Adience |
| [googlenet_gender_adience](https://drive.google.com/drive/folders/1r0GroTfsF7VpLhcS3IxU-LmAh6rI6vbQ?usp=sharing) | [23 MB](models/gender_googlenet.onnx)| 1.6 | 11 | Adience |
| [vgg_ilsvrc_16_age_chalearn_iccv2015](https://drive.google.com/drive/folders/1wE4_sj-UBumkjDK9mtfaO9eUan_z44cY?usp=sharing) | [513 MB](models/vgg_ilsvrc_16_age_chalearn_iccv2015.onnx) | 1.6 | 11 | ChaLearn LAP 2015 |
| [vgg_ilsvrc_16_age_imdb_wiki](https://drive.google.com/drive/folders/14wckle-MbnN10xzdzgF464bMnlM-dd5-?usp=sharing) | [513 MB](models/vgg_ilsvrc_16_age_imdb_wiki.onnx)| 1.6 | 11 | IMDB-WIKI |
| [vgg_ilsvrc_16_gender_imdb_wiki](https://drive.google.com/drive/folders/16Z1r7GEXCsJG_384VsjlNxOFXbxcXrqM?usp=sharing) | [512 MB](models/vgg_ilsvrc_16_gender_imdb_wiki.onnx)| 1.6 | 11 | IMDB-WIKI |
## Inference
### GoogleNet
Input tensor is `1 x 3 x height x width` with mean values `104, 117, 123`. Input image have to be previously resized to `224 x 224` pixels and converted to `BGR` format.
Run [levi_googlenet.py](levi_googlenet.py) python script example.
### VGG-16
Input tensor is `1 x 3 x height x width`, which values are in range of `[0, 255]`. Input image have to be previously resized to `224 x 224` pixels and converted to `BGR` format.
Run [rothe_vgg.py](rothe_vgg.py) python script example.
## References
* Levi et al. - [Age and Gender Classification Using Convolutional Neural Networks](https://talhassner.github.io/home/publication/2015_CVPR).
* Rothe et al. - [IMDB-WIKI – 500k+ face images with age and gender labels](https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/).
* Lapuschkin et al. - [Understanding and Comparing Deep Neural Networks for Age and Gender Classification](https://github.com/sebastian-lapuschkin/understanding-age-gender-deep-learning-models).
* Caffe to ONNX: [unofficial converter](https://github.com/asiryan/caffe-onnx).
## Contributors
Valery Asiryan ([asiryan](https://github.com/asiryan))
## License
Apache 2.0
snowjake
- 粉丝: 6
- 资源: 34
最新资源
- GMSK 的最大似然序列检测Matlab代码.rar
- Gray编码2^2n-QAM调制的AWGN下的精确BER附Matlab代码.rar
- GSM信道的编码、交织、编码和调制Matlab代码.rar
- IEEE 802.11b标准兼容的链路层代码,用于基于MATLAB的软件定义无线电.rar
- IEEE 802.15.3a UWB信道模型的Matlab实现.rar
- LSE和稀疏信道估计的OFDM系统的BER性能Matlab代码.rar
- LSE信道估计的性能将根据接收数据的误码率来评估Matlab代码.rar
- Matlab程序模拟了BPSK调制在AWGN信道中的误码率性能。.rar
- M 阵列 QAM 调制的 MATLAB 代码.rar
- MATLAB程序模拟了BPSK接收器.rar
- MATLAB代码的基本传输线参数计算工具,计算一系列传输线的基本参数,如条带宽度、间距等。.rar
- Matlab代码对随机生成的位模式进行了PSK调制和解调.rar
- Matlab代码计算了SM在信道系数建模为不相关瑞利衰落信道情况下的误码率.rar
- Matlab代码实现了脉冲编码调制(PCM)及其变体Delta调制.rar
- MATLAB代码用于ASK调制和解调.rar
- Matlab代码计算瑞利信道中 16-QAM 的 BER 值。.rar
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈