Learn how to create interactive and visually aesthetic plots using the Bokeh package in Python Key Features A step by step approach to creating interactive plots with Bokeh Go from nstallation all the way to deploying your very own Bokeh application Work with a real time datasets to practice and create your very own plots and applications Book Description Adding a layer of interactivity to your plots and converting these plots into applications hold immense value in the field of data science. The standard approach to adding interactivity would be to use paid software such as Tableau, but the Bokeh package in Python offers users a way to create both interactive and visually aesthetic plots for free. This book gets you up to speed with Bokeh - a popular Python library for interactive data visualization. The book starts out by helping you understand how Bokeh works internally and how you can set up and install the package in your local machine. You then use a real world data set which uses stock data from Kaggle to create interactive and visually stunning plots. You will also learn how to leverage Bokeh using some advanced concepts such as plotting with spatial and geo data. Finally you will use all the concepts that you have learned in the previous chapters to create your very own Bokeh application from scratch. By the end of the book you will be able to create your very own Bokeh application. You will have gone through a step by step process that starts with understanding what Bokeh actually is and ends with building your very own Bokeh application filled with interactive and visually aesthetic plots. What you will learn Installing Bokeh and understanding its key concepts Creating plots using glyphs, the fundamental building blocks of Bokeh Creating plots using different data structures like NumPy and Pandas Using layouts and widgets to visually enhance your plots and add a layer of interactivity Building and hosting applications on the Bokeh server Creating advanced plots using spatial data Who this book is for This book is well suited for data scientists and data analysts who want to perform interactive data visualization on their web browsers using Bokeh. Some exposure to Python programming will be helpful, but prior experience with Bokeh is not required. Table of Contents Bokeh installation and key concepts Plotting using glyphs Plotting with different data structures Using layouts for effective presentation Using annotations, widgets and visual attributes for visual enhancement Building and hosting applications using the Bokeh Server Advanced Plotting with Networks, Geo data, WebGL and Exporting plots The Bokeh Workflow: A case study
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![application/pdf](https://img-home.csdnimg.cn/images/20210720083512.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![epub](https://img-home.csdnimg.cn/images/20250102104920.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/release/download_crawler_static/10491909/bg1.jpg)
![](https://csdnimg.cn/release/download_crawler_static/10491909/bg2.jpg)
![](https://csdnimg.cn/release/download_crawler_static/10491909/bg3.jpg)
![](https://csdnimg.cn/release/download_crawler_static/10491909/bg4.jpg)
剩余204页未读,继续阅读
![avatar-default](https://csdnimg.cn/release/downloadcmsfe/public/img/lazyLogo2.1882d7f4.png)
- oychw2018-08-05very good!
![avatar](https://profile-avatar.csdnimg.cn/default.jpg!1)
- 粉丝: 21
- 资源: 174
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助
![voice](https://csdnimg.cn/release/downloadcmsfe/public/img/voice.245cc511.png)
![center-task](https://csdnimg.cn/release/downloadcmsfe/public/img/center-task.c2eda91a.png)
最新资源
- 基于Vue、JavaScript和HTML的KTV点歌系统前台Scss设计源码
- Resume_JuliaLu.pdf
- 五类实时交通目标检测自建数据集:涵盖汽车、灯光、摩托、行人与路标,总计1498张图片分列训练、验证与测试集,支持多种格式转换,原始图像未经预处理,可直接用于YOLO、VOC、COCO等目标检测算法,并
- 永磁同步电机PMSM负载状态估计与转矩预测:基于卡尔曼滤波与龙伯格观测器的MATLAB仿真研究,永磁同步电机PMSM负载状态估计与转矩预测:基于卡尔曼滤波与龙伯格观测器的MATLAB仿真研究,永磁同步
- 基于JavaScript的Diy对戒选购与搭配技巧实现源码
- 基于ant-design-blazor和FreeSql的QuartzCore.Blazor作业管理平台设计源码
- MATLAB环境下基于随机减量技术(RDT)的多领域结构阻尼比精准识别方法(附参考文献),MATLAB环境下基于随机减量技术的结构阻尼比智能识别方法(适用于土木、航空航天及机械领域),MATLAB环境
- 基于Java的Html+Java语言javaweb学习设计源码
- 基于Java编程语言的it社团郭开心考核作业设计源码
- 基于SpringBoot的Web工作绩效管理系统设计与实现源码及文档
- 基于重大卓越工程师学院的蔡鸿华刘子锐车载软件开发任务2设计源码
- 智能驾驶资料包:涵盖多项前沿技术(包括ADAS V2X、毫米波雷达等)至2024年设计原理和方案解析,智能驾驶资料包:涵盖多项技术原理与方案,更新至2024的行业知识汇总,智能驾驶资料包,ADAS A
- 光伏PV三相并网逆变器MATLAB仿真模型:高效功率输出与稳定性能表现,光伏PV三相并网逆变器MATLAB仿真模型:高效功率输出与稳定性能分析,光伏PV三相并网逆变器MATLAB仿真 模型内容: 1
- Comsol多领域仿真解析:光学、电磁场、传热与等离子体建模,电路辅导及远场偏振调控研究,Comsol多领域仿真探索:光学、电磁场、传热与等离子体建模及远场偏振调控研究,comsol光学仿真 coms
- 三相六拍步进电机控制器的设计分解.doc
- Realtek8852BE-WiFi模块Windows驱动
![feedback](https://img-home.csdnimg.cn/images/20220527035711.png)
![feedback-tip](https://img-home.csdnimg.cn/images/20220527035111.png)
![dialog-icon](https://csdnimg.cn/release/downloadcmsfe/public/img/green-success.6a4acb44.png)