package com.nbsl.cv.utils;
import java.util.Vector;
import org.opencv.core.Core;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Rect;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
/**
* 核心
* @author eguid
*
*/
public class CoreFunc {
public enum Direction {
UNKNOWN, VERTICAL, HORIZONTAL
}
/**
* Get the Sobel Mat of input image!
*
* @param image
* The input image.
* @return The Sobel Mat image of input image.
*/
public static Mat Sobel(Mat image) {
if (image.empty()) {
System.out.println("Please check the input image!");
return image;
}
Mat gray = image.clone();
if (3 == gray.channels()) {
Imgproc.cvtColor(gray, gray, Imgproc.COLOR_BGR2GRAY);
}
Mat grad = new Mat();
Mat grad_x = new Mat();
Mat grad_y = new Mat();
Mat abs_grad_x = new Mat();
Mat abs_grad_y = new Mat();
final int scharr_scale = 1;
final int scharr_delta = 0;
final int scharr_ddpeth = CvType.CV_16S;
Imgproc.Sobel(gray, grad_x, scharr_ddpeth, 1, 0, 3, scharr_scale, scharr_delta, Core.BORDER_DEFAULT);
Imgproc.Sobel(gray, grad_y, scharr_ddpeth, 0, 1, 3, scharr_scale, scharr_delta, Core.BORDER_DEFAULT);
Core.convertScaleAbs(grad_x, abs_grad_x);
Core.convertScaleAbs(grad_y, abs_grad_y);
Core.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad);
return grad;
}
public static double otsu(Mat image) {
int threshold=0;
double maxVariance = 0;
double w0=0,w1=0;//前景与背景像素点所占比例
double u0=0,u1=0;//前景与背景像素值平均灰度
double[] histogram=new double[256];
double Num=image.cols()*image.rows();
//统计256个bin,每个bin像素的个数
for(int i=0;i<image.rows();i++){
for(int j=0;j<image.cols();j++){
double record = image.get(i, j)[0];
histogram[(int)record]++; //cout<<"Histogram[data[i*image.step+j]]++:;"<<histogram[int(*p++)]++<<endl;
}
}
//前景像素统计
for(int i=0;i<255;i++){
w0=0;
w1=0;
u0=0;
u1=0;
for(int j=0;j<=i;j++){
w0=w0+histogram[j];//以i为阈值,统计前景像素个数
u0=u0+j*histogram[j];//以i为阈值,统计前景像素灰度总和
}
w0=w0/Num;u0=u0/w0;
//背景像素统计
for(int j=i+1;j<=255;j++){
w1=w1+histogram[j];//以i为阈值,统计前景像素个数
u1=u1+j*histogram[j];//以i为阈值,统计前景像素灰度总和
}
w1=w1/Num;u1=u1/w1;
double variance=w0*w1*(u1-u0)*(u1-u0); //当前类间方差计算
if(variance > maxVariance)
{
maxVariance = variance;
threshold = i;
}
}
//cout<<"threshold:"<<threshold<<endl;
return threshold;
}
public static float[] projectedHistogram(final Mat img, Direction direction) {
int sz = 0;
switch (direction) {
case HORIZONTAL:
sz = img.rows();
break;
case VERTICAL:
sz = img.cols();
break;
default:
break;
}
// 统计这一行或一列中,非零元素的个数,并保存到nonZeroMat中
float[] nonZeroMat = new float[sz];
Core.extractChannel(img, img, 0);
for (int j = 0; j < sz; j++) {
Mat data = (direction == Direction.HORIZONTAL) ? img.row(j) : img.col(j);
int count = Core.countNonZero(data);
nonZeroMat[j] = count;
}
// Normalize histogram
float max = 0;
for (int j = 0; j < nonZeroMat.length; ++j) {
max = Math.max(max, nonZeroMat[j]);
}
if (max > 0) {
for (int j = 0; j < nonZeroMat.length; ++j) {
nonZeroMat[j] /= max;
}
}
return nonZeroMat;
}
/**
* 将Rect按位置从左到右进行排序
*
* @param vecRect
* @param out
* @return
*/
public static Vector<Rect> SortRect(final Vector<Rect> vecRect) {
Vector<Rect> out = new Vector<Rect>();
Vector<Integer> orderIndex = new Vector<Integer>();
Vector<Integer> xpositions = new Vector<Integer>();
for (int i = 0; i < vecRect.size(); ++i) {
orderIndex.add(i);
xpositions.add(vecRect.get(i).x);
}
float min = xpositions.get(0);
int minIdx;
for (int i = 0; i < xpositions.size(); ++i) {
min = xpositions.get(i);
minIdx = i;
for (int j = i; j < xpositions.size(); ++j) {
if (xpositions.get(j) < min) {
min = xpositions.get(j);
minIdx = j;
}
}
int aux_i = orderIndex.get(i);
int aux_min = orderIndex.get(minIdx);
orderIndex.remove(i);
orderIndex.insertElementAt(aux_min, i);
orderIndex.remove(minIdx);
orderIndex.insertElementAt(aux_i, minIdx);
float aux_xi = xpositions.get(i);
float aux_xmin = xpositions.get(minIdx);
xpositions.remove(i);
xpositions.insertElementAt((int) aux_xmin, i);
xpositions.remove(minIdx);
xpositions.insertElementAt((int) aux_xi, minIdx);
}
for (int i = 0; i < orderIndex.size(); i++)
out.add(vecRect.get(orderIndex.get(i)));
return out;
}
/**
* Assign values to feature
* <p>
* 样本特征为水平、垂直直方图和低分辨率图像所组成的矢量
*
* @param in
* @param sizeData - 低分辨率图像size = sizeData*sizeData, 可以为0
* @return
*/
public static Mat features(final Mat in, final int sizeData) {
float[] vhist = projectedHistogram(in, Direction.VERTICAL);
float[] hhist = projectedHistogram(in, Direction.HORIZONTAL);
Mat lowData = new Mat();
if (sizeData > 0) {
Imgproc.resize(in, lowData, new Size(sizeData, sizeData));
}
int numCols = vhist.length + hhist.length + lowData.cols() * lowData.rows();
Mat out = Mat.zeros(1, numCols, CvType.CV_32F);
//FloatIndexer idx = out.createIndexer();
int j = 0;
for (int i = 0; i < vhist.length; ++i, ++j) {
out.put(0, j, vhist[i]);
// idx.put(0, j, vhist[i]);
}
for (int i = 0; i < hhist.length; ++i, ++j) {
out.put(0, j, hhist[i]);
// idx.put(0, j, hhist[i]);
}
for (int x = 0; x < lowData.cols(); x++) {
for (int y = 0; y < lowData.rows(); y++, ++j) {
// float val = lowData.ptr(x, y).get() & 0xFF;
float val = (float)(lowData.get(x, y)[0]);
// idx.put(0, j, val);
out.put(0, j, val);
}
}
return out;
}
}
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
Java基于openCV实现的身份证图像识别系统源代码。它基于openCV这个开源库,并且基于java开发,解决了目前开源身份证识别尤其是java方面的身份证识别 它的识别率较高。图片清晰情况下,号码检测与字符识别可以达到90%以上的精度。
资源推荐
资源详情
资源评论
收起资源包目录
idCardCv-master.zip (39个子文件)
idCardCv-master
.classpath 938B
.settings
org.eclipse.wst.jsdt.ui.superType.name 6B
org.eclipse.jdt.core.prefs 670B
org.eclipse.core.resources.prefs 57B
.jsdtscope 560B
org.eclipse.wst.common.component 612B
org.eclipse.wst.common.project.facet.core.xml 345B
org.eclipse.wst.jsdt.ui.superType.container 49B
src
com
nbsl
idcard
CHAR_SVM.java 4KB
CHAR_KNN.java 4KB
IdCardCvUtils.java 5KB
CHAR_ANN.java 5KB
cv
utils
CannyUtils.java 5KB
ImageUtils.java 62B
CoreFunc.java 7KB
FileUtil.java 928B
web
WEB-INF
classes
data
chars2.rar 3.68MB
model
svm.xml 490KB
ann.xml 185KB
test
xx4.jpg 30KB
debug_specMat1.jpg 728B
debug_specMat0.jpg 572B
com
nbsl
idcard
CHAR_KNN.class 5KB
CHAR_SVM.class 6KB
IdCardCvUtils.class 7KB
CHAR_ANN.class 6KB
cv
utils
CoreFunc.class 6KB
CannyUtils.class 6KB
FileUtil.class 1KB
CoreFunc$Direction.class 1KB
ImageUtils.class 291B
META-INF
MANIFEST.MF 39B
res
data
chars2.rar 3.68MB
model
svm.xml 490KB
ann.xml 185KB
test
xx4.jpg 30KB
debug_specMat1.jpg 728B
debug_specMat0.jpg 572B
.project 1KB
共 39 条
- 1
资源评论
云哲-吉吉2021
- 粉丝: 3963
- 资源: 1129
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功